
Tom Hacohen
DeveloperWeek 2023

What You Need to Know Before
Launching Your API
Learnings from and other APIs

@TomHacohen
www.svix.com

https://twitter.com/TomHacohen
https://www.svix.com/

Who am I?
Founder and CEO of Svix - Webhooks as a Service

Help companies send webhooks
An API first developer tool

Open source dev and maintainer
Previously led teams at Samsung and the Israeli
intelligence corps

General Guidelines

Keep It Simple Silly
Complexity is your biggest enemy - avoid if possible
Prevents you from moving fast
Many points of failure
Hard to reason about

There is good debt and bad debt
Good debt Bad debt

Understand your tech stack
Different technology comes with different trade-offs
Do you care about consistency? Availability?
Know the tools you use and their limitations

Understand the Problem

Know your customers

What do they want?
What do they care about?
What would they hate?
Have the curiosity of a child.

“If I asked people what they wanted, they
would have asked for a faster horse.”

— Henry Ford

It's not what you do,
it's what you enable

Understand the solution
Have a deep understanding of your chosen solution
But be flexible and dynamic
“Everyone has a plan until they get punched in the
mouth” — Mike Tyson

Set the right foundations

Manage API complexity
Strive for simplicity, and learn to say no
Be explicit, watch out for accidental flexibility

Especially watch out with GraphQL
Can't break API - if you build it, you're stuck with it

Try to plan for forward compatibility
Don't leak implementation details

Choose your data layer wisely
“Bad programmers worry about the code. Good programmers worry about

data structures and their relationships.”
— Linus Torvalds

People will still use it wrong
Make it easy to use right
Make it hard to use wrong
Expect it to be used wrong and be ready

Find your north star
For us it's RELIABILITY, so:

Never lose a message once accepted
Avoid downtime at all costs
High speed and low latency

Be dependable

Monitor everything
Have fully visibility into your systems

Ensure high availability
If you are down, your customers are down

Know your dependencies

When things go wrong
Hope for the best, prepare for the worst
Have backups and a disaster recovery plan
Have accountability (public status page)
Do post-mortems to understand failures

Don't aim for 100% uptime
100% uptime is not achievable, you gotta stop somewhere

E.g. destruction of the earth is out of scope
Law of diminishing returns
Chasing 100% can make things more brittle

Which leads to less uptime…

Follow security best practices
Application security (secure coding, updating deps…)
Operational security (patching, training…)
Least privilege access control
Customer data segmentation
Paper trail - log all access and operations
Alert on security anomalies data access

Make security easy for your customers
Role based access control
Enable key rotation and scoped keys
Educate them about security with your service
Make it hard to get security wrong

It's more than just code
There is a lot of devops
There is a lot of infrastructure
Use infra-as-code - don't touch the UI!
Build or buy? I prefer buy

Prepare for the future,
but build for the present

Make it scalable,
but not too much

Build for 2-5x your current expected scale
Have a path in mind for 10-20x

Anticipate future needs
Multiple regions & multiple environments
Role base access control

Be flexible and extensible
Your customers are developers
Let them build cool things with your product

Send webhooks
Enables real-time interactions with your system
Your customers want it to build integrations
Make sure it's reliable (retry, scaling, etc.)
Watch out for security implications (SSRF, MITM, replay)
Don't forget about monitoring, fanout, more…

The devtool equivalent of UX

Be consistent
API Standards vs. BDFL

Great docs make the difference
Both overview and deep-dive
Both beginners and advance
Show how your API should be used
Don't assume people know your product

The curse of knowledge

https://en.wikipedia.org/wiki/Curse_of_knowledge

Don't forget about tutorials
Guide developers through common uses
Get them started quickly - easy onboarding
Highlight cool features

Even developers need support

Have a great API
Good

await fetch('https://api.svix.com/api/v1/app/', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 'Accept': 'application/json'
 'Authorization': 'Bearer ' + token,
 },
 body: '{"name": "some name", "uid": "app_234"}',
});

Have an awesome SDK
Better

const svix = new Svix(token);

await svix.application.create({
 name: "some name",
 uid: "app_234",
});

A few SDK tips
Consistent with language first, across SDKs second
User-Agent: svix-libs/1.29.0/python

X-Request-ID: f058ebd...344e8cde5

Automatic retries in short intervals
Include attempt count in header
Reuse request-id

Show X-Request-ID in SDK errors

Be defensive and helpful

Tag your auth tokens

testsk_lF0OEQKwBr7VYC0qpFW7XGYIBycWgqcB.eu

test: optional test environment indicator
sk: type of key (secret key, public key, etc.)
lF0OEQKwB…BycWgqcB: random token
eu: region

Add the shape to secret scanning databases

Tag your IDs
// Application token
app_29we3mZemNijHrQcrLlJG1pRCst

// Endpoint token
ep_1uikje8Xw8Z3GaSwtUYmIBhhYTN

// Message token
msg_27OEWWmNfwpCwutpZ4GVeypLvvP

Support user-defined IDs
await svix.application.create({
 name: "some name",
 uid: "my-app-123", // This is your customers' internal ID
});
// Created ID: app_29we3mZemNijHrQcrLlJG1pRCst

// These IDs can then use interchangeably
await svix.endpoint.list("app_29we3mZemNijHrQcrLlJG1pRCst");
await svix.endpoint.list("my-app-123");

Closing words
Main takeaway: it's not all about the code
These worked for us, you may be different

Questions?
For webhooks, check out at

Something missing? Tweet at

www.svix.com

@TomHacohen

https://twitter.com/TomHacohen

