The EFL API in Review

stosb.com/talks

Tom Hacohen

Samsung Electronics Open Source Group
tom.hacohen@samsung.com
@TomHacohen

EFL Dev Day NA 2015


mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
https://www.twitter.com/TomHacohen

Introduction

Today's Topics




Introduction

Today's Topics

» Eo recap




Introduction

Today's Topics

» Eo recap

> Interfaces recap




Introduction

Today's Topics

» Eo recap
» Interfaces recap

» Major decisions for the future




Main Goals
Unify Code




Main Goals
Unify Code

» Many different object systems — one




Main Goals
Unify Code

» Many different object systems — one

» Many different event/callback implementations — one




Main Goals
Unify Code

» Many different object systems — one
» Many different event/callback implementations — one

» Make objects compatible




Main Goals

Reducing our API




Main Goals
Reducing our API

We have:

evas_object_image_file_set(obj, "blah.png", “key");
edje_object_file_set (obj, "blah.edj", "group");

evas_object_del (obj) ;
ecore_timer_del (obj);
ecore_animator_del (obj);




Main Goals

Bindings Generation




Main Goals

Bindings Generation

> Be able to automatically generate for most popular languages




Main Goals

Bindings Generation

> Be able to automatically generate for most popular languages

» Correctly handle ref counting, buffer ownership and etc.




Main Goals

Not Hurt Performance




Main Goals

Not Hurt Performance

» Not easily measurable — many changes in EFL




Other Object Systems

Other Languages




Other Object Systems

Other Languages

» C++ — our developers hate it




Other Object Systems

Other Languages

» C++ — our developers hate it
» Objective C — quite ugly and not really common in OSS world




Other Object Systems

Other Languages

» C++ — our developers hate it
» Objective C — quite ugly and not really common in OSS world
» We considered using just the runtime




Other Object Systems

GObject




Other Object Systems

GObject

Good:

» Fast




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”

Bad:

» Doesn't offer a stable ABI




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”

Bad:

» Doesn't offer a stable ABI

» Funny, full of casting syntax




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”

Bad:

» Doesn't offer a stable ABI
» Funny, full of casting syntax

> “G tech” dependencies




Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”

Bad:
Doesn't offer a stable ABI

v

v

Funny, full of casting syntax

v

"G tech” dependencies

v

Didn’t exactly fit our needs




What is Eo?

Basics




What is Eo?

Basics

» It's Enlightenment'’s (fairly) new object system




What is Eo?

Basics

» It's Enlightenment'’s (fairly) new object system

» Supports classes, abstract classes, mixins and interfaces




What is Eo?

Basics

» It's Enlightenment'’s (fairly) new object system
» Supports classes, abstract classes, mixins and interfaces

» Completely written in C (no external preprocessor)




What is Eo?

Basics

v

It's Enlightenment’s (fairly) new object system

v

Supports classes, abstract classes, mixins and interfaces

v

Completely written in C (no external preprocessor)
API/ABI stable

v




What is Eo?

Basics

v

It's Enlightenment’s (fairly) new object system

v

Supports classes, abstract classes, mixins and interfaces

v

Completely written in C (no external preprocessor)
API/ABI stable
Portable

v

v




What is Eo?

Using Eo




What is Eo?
Using Eo

> eo_do(obj, efl_file_set("file.eet", "key"));




What is Eo?
Using Eo

> eo_do(obj, efl_file_set("file.eet", "key"));
> if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))




What is Eo?
Using Eo

» eo_do(obj, efl_file_set("file.eet", "key"));

> if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))

» eo_do(obj, visible = elm_widget_visibility_get(), <«
elm_widget_visibility_set(!visible));




What is Eo?
Using Eo

» eo_do(obj, efl_file_set("file.eet", "key"));

> if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))

» eo_do(obj, visible = elm_widget_visibility_get(), <«
elm_widget_visibility_set(!visible));

> eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));




What is Eo?
Using Eo

» eo_do(obj, efl_file_set("file.eet", "key"));

> if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))

» eo_do(obj, visible = elm_widget_visibility_get(), <«
elm_widget_visibility_set(!visible));

> eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

» static void size_multiply(double f£f)

{
int w, h;
evas_object_geometry_get (NULL, NULL, &w, &h);
evas_object_geometry_set (NULL, NULL, w * f, h *x f);
}

eo_do(obj, size_multiply(3.5));




What is Eo? | Internals

eo_do() — How It's Done (simplified)




What is Eo? | Internals

eo_do() — How It's Done (simplified)

#tdefine eo_do(eoid, ...) \

do { \
_eo_do_start(eoid); \
__VA_ARGS__; \
_eo_do_end () ; \

} while (0)




What is Eo? | Internals

eo_do_ret() — How It's Done (simplified)




What is Eo? | Internals

eo_do_ret () — How It's Done (simplified)

#define eo_do_ret(eoid, ret_tmp, func) \
(
_eo_do_start (eoid),
ret_tmp = func,
_eo_do_end (),
ret_tmp

s




What is Eo? | Internals

Defining New Functions (simplified)




What is Eo? | Internals
Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);




What is Eo? | Internals
Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name, Ret, DefRet)
Ret Name (void)
{
static Eo_Op op = EO_NOOP;
if (op == EO_NOOP)
op = _eo_api_op_id_get ((voidx*) Name) ;

if (!_eo_call_resolve (#Name, op, &call))
return DefRet;

_Eo_##Name## _func _func_ =
(_Eo_##Name##_func) call.func;

return _func_(call.obj, call.data);

P A L A




What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata




What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_descl[] = {
EO_OP_FUNC(edje_obj_update_hints_set, <
_edje_object_update_hints_set),
EO_OP_FUNC_OVERRIDE (eo_constructor , <
_edje_object_eo_base_constructor),
E0O_OP_CLASS_FUNC(eo_event_global_thaw, ¢
_eo_base_event_global_thaw),
EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw, ¢
_edje_object_eo_base_event_global_thaw)




What is Eo? | Internals

Event Identifiers




What is Eo? | Internals

Event Identifiers

EOAPI const Eo_Event_Description <
_E0O_BASE_EVENT_CALLBACK_ADD = <>
EO_EVENT_DESCRIPTION("callback,add");




What is Eo? |

Unique Features




What is Eo? |

Unique Features

» Pointer indirection (at least in C)




What is Eo? |

Unique Features

» Pointer indirection (at least in C)

» Multiple calls in one context




What is Eo? |

Unique Features

» Pointer indirection (at least in C)
» Multiple calls in one context

» How we do constructors (setting properties, no constructors)

Open Source Group



What is Eo? |

Unique Features

v

Pointer indirection (at least in C)

v

Multiple calls in one context

v

How we do constructors (setting properties, no constructors)

v

Named ref-counting




What is Eo? |

Unique Features

v

Pointer indirection (at least in C)

v

Multiple calls in one context

v

How we do constructors (setting properties, no constructors)

v

Named ref-counting

v

Composite objects




What is Eo? |

Unique Features

v

Pointer indirection (at least in C)

v

Multiple calls in one context

v

How we do constructors (setting properties, no constructors)

v

Named ref-counting

v

Composite objects

Default return values

v




Reception |

Wash, Rinse, Repeat




Reception |

Wash, Rinse, Repeat

» Eol




Reception |

Wash, Rinse, Repeat

» Eol
» Eo2




Reception |

Wash, Rinse, Repeat

» Eol
» Eo2

» Eolian




Reception |

Wash, Rinse, Repeat

» Eol
» Eo2

Eolian

v

v

Eolian (improved)




Impact |

Stability




Impact |

Stability

» Pointer indirection saved us in many cases

Open Source Group



Impact |

Stability

» Pointer indirection saved us in many cases

» We caught a lot of errors that were not noticed before

Open Source Group



Impact |

Stability

» Pointer indirection saved us in many cases
» We caught a lot of errors that were not noticed before

» Single point of access for type checking makes it impossible to forget

Open Source Group



Impact |

Reduced API




Impact |

Reduced API

Before:

evas_object_image_file_set(obj, "blah.png", "key");
edje_object_file_set(obj, "blah.edj", ”group");

evas_object_del (obj);
ecore_timer_del (obj);
ecore_animator_del (obj);




Impact |

Reduced API

Before:
evas_object_image_file_set (obj, "blah.png", "key");
edje_object_file_set (obj, "blah.edj", "group");

evas_object_del (obj);
ecore_timer_del (obj);
ecore_animator_del (obj);

Now:

eo_do(obj, efl_file_set("blah.file", "key"));

eo_del (obj);




Eolian |

But writing objects in C is tedious!




Eolian |

But writing objects in C is tedious!

» The answer: Eolian




Eolian |

But writing objects in C is tedious!

» The answer: Eolian

» Eolian parses Eo API declarations




Eolian |

But writing objects in C is tedious!

» The answer: Eolian
» Eolian parses Eo API declarations

» Eolian allows for automated binding generators




Eolian |

But writing objects in C is tedious!

v

The answer: Eolian

v

Eolian parses Eo API declarations

v

Eolian allows for automated binding generators

v

Eolian is meant to be familar for everyone




Eolian |

A new format?




Eolian |

A new format?

> Language independent — easy bindings




Eolian |

A new format?

> Language independent — easy bindings

» Familiar syntax — easy to pick up




Eolian |

A new format?

> Language independent — easy bindings
» Familiar syntax — easy to pick up

> Easy to read and write




Eolian |

A new format?

v

Language independent — easy bindings

v

Familiar syntax — easy to pick up

v

Easy to read and write

v

Declarative and descriptive




class Namespace.Class (inherits) {

methods { ... 1}
properties { ... }
events { ... }
implements { ... }
constructors { ... }

type Type_Name: Type_Def;
struct Struct_Name { ... }
enum Enum_Name { ... 7}




methods {
method_name G@class G@protected {
params {
@in int x;
Q@out const(char) x*y;
}

return: own(charx*) ;




properties {
property_name {
keys {
list<int> *x;
}
values {
int v;
}
get {}
set {%}




Eolian |

Generators!




Eolian |

Generators!

> Initial generator: C




Eolian |

Generators!

> Initial generator: C

» Further generators in core EFL: C++ and Lua




Eolian |

Generators!

> Initial generator: C
» Further generators in core EFL: C++ and Lua
» Third party generators (under development): JavaScript, Python, Rust and OCaml




Eolian |

The Eolian library




Eolian |

The Eolian library

» C API: simple and easy to use




Eolian |

The Eolian library

» C API: simple and easy to use

» Minimum of non-standard data types — easy to bind




Eolian |

The Eolian library

» C API: simple and easy to use
» Minimum of non-standard data types — easy to bind

» Not only for generators (IDEs. .. )




Eolian |

The Eolian library

» C API: simple and easy to use

» Minimum of non-standard data types — easy to bind

v

Not only for generators (IDEs...)

v

Simple database




Eolian |

However. . .




Eolian |

However. . .

» Some things are still missing




Eolian |

However. . .

» Some things are still missing

» Documentation?

Open Source Group



Eolian |

However. . .

» Some things are still missing
» Documentation?

» Value ownership

Open Source Group



Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others




Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others




Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others

And vyet. ..




Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others

And vyet. ..

» Very useful




Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others

And vyet. ..

» Very useful

» Generic




Eolian |

However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others

And vyet. ..

» Very useful
» Generic
» I'd like to get it adopted by others (non EFL)




Other Projects |

Clouseau




Other Projects |

Clouseau

> Is there anyone who doesn’t know this one by now?




Other Projects |

Clouseau

> Is there anyone who doesn’t know this one by now?
» Application state inspector for the EFL




Other Projects |

Clouseau

> Is there anyone who doesn’t know this one by now?
» Application state inspector for the EFL
» Was not created following Eo (but greatly improved)




Other Projects |
Clouseau

Is there anyone who doesn’t know this one by now?
Application state inspector for the EFL

Was not created following Eo (but greatly improved)
Will get even better with Eolian

vV vyYyysy




Other Projects |

Erigo




Other Projects |
Erigo

» EFL GUI builder




Other Projects |
Erigo

» EFL GUI builder
» Reads properties from Eolian




Other Projects |
Erigo

» EFL GUI builder
» Reads properties from Eolian
» Supports whatever version is installed on the system automatically




Other Projects |
Erigo

» EFL GUI builder

» Reads properties from Eolian
» Supports whatever version is installed on the system automatically
» Supports widgets that it has no notion of




Other Projects |
Erigo

» EFL GUI builder

» Reads properties from Eolian
» Supports whatever version is installed on the system automatically
» Supports widgets that it has no notion of

» Has it's own format that is processed by language specific code generators

Open Source Group



Other Projects |

Espion




Other Projects |

Espion

» Goal: easily import GUIs to Erigo




Other Projects |

Espion

» Goal: easily import GUIs to Erigo
» Intercepts eo_add() and eo_do()




Other Projects |

Espion

» Goal: easily import GUIs to Erigo
» Intercepts eo_add() and eo_do()
» Uses Eolian to correctly process the calls




EFL Interfaces |

What is it about (again)?




EFL Interfaces |

What is it about (again)?

» Fixing up the EFL API and inheritance




EFL Interfaces |

What is it about (again)?

» Fixing up the EFL API and inheritance

» Utilising the new Eo features




EFL Interfaces |

What is it about (again)?

» Fixing up the EFL API and inheritance
» Utilising the new Eo features
» Annotating the EFL API for generated bindings




EFL Interfaces |

What is it about (again)?

v

Fixing up the EFL APl and inheritance

v

Utilising the new Eo features
Annotating the EFL API for generated bindings

v

v

Creating new classes that are important for the life cycle




EFL Interfaces |

What is it about (again)?

v

Fixing up the EFL APl and inheritance

v

Utilising the new Eo features
Annotating the EFL API for generated bindings

v

v

Creating new classes that are important for the life cycle

v

“Insanely important” — Carsten Haitzler (A few hours ago)




EFL Interfaces |

What is it about (again)?

» Fixing up the EFL API and inheritance

» Utilising the new Eo features

» Annotating the EFL API for generated bindings

» Creating new classes that are important for the life cycle

» “Insanely important” — Carsten Haitzler (A few hours ago)

» Everything that's even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.




EFL Interfaces | Examples

Fixing APl and Inheritance




EFL Interfaces | Examples

Fixing APl and Inheritance

» Making all of the Ecore_* Eo objects




EFL Interfaces | Examples

Fixing APl and Inheritance

» Making all of the Ecore_* Eo objects
» Removing duplicated APlIs
elm_layout_part_text_set ()

edje_object_part_text_set ()
elm_object_text_set ()




EFL Interfaces | Examples

Fixing APl and Inheritance

» Making all of the Ecore_* Eo objects
» Removing duplicated APlIs

elm_layout_part_text_set ()
edje_object_part_text_set ()
elm_object_text_set ()

> Make Elm.Layout implement Edje.Object




EFL Interfaces | Examples

Using Eo Features




EFL Interfaces | Examples

Using Eo Features

> Moving Ecore.Animator to be a signal on the window




EFL Interfaces | Examples

Using Eo Features

> Moving Ecore.Animator to be a signal on the window

» Moving Ecore.Job to be a signal on the mainloop




EFL Interfaces | Examples

Annotating for Bindings




EFL Interfaces | Examples

Annotating for Bindings

» Add @own to relevant parameters




EFL Interfaces | Examples

Annotating for Bindings

» Add @own to relevant parameters

» Add enums/struct definitions in .eo files (when public)




EFL Interfaces | Examples

Annotating for Bindings

» Add @own to relevant parameters
» Add enums/struct definitions in .eo files (when public)

» Use correct class names instead of Eo *




EFL Interfaces | Examples

New Classes




EFL Interfaces | Examples

New Classes

» Mainloop object




EFL Interfaces | Examples

New Classes

» Mainloop object

> Application object




Questions | Examples

Questions so far?




Discussions | Examples

Nullability




Discussions | Examples

Nullability

» Change and split @notnull to @nullable and @optional




Discussions | Examples

Nullability

» Change and split @notnull to @nullable and @optional
» Very useful for languages that support this notion (e.g. Rust and C++)




Discussions | Examples

Nullability

» Change and split @notnull to @nullable and @optional
» Very useful for languages that support this notion (e.g. Rust and C++)

> Leads to safer code and more information about types




Discussions | Examples

Nullability

v

Change and split @notnull to @nullable and @optional

v

Very useful for languages that support this notion (e.g. Rust and C++)

v

Leads to safer code and more information about types
Side effect: stop using EINA_ARG_NONNULL

v




Discussions | Examples

Thread Safety




Discussions | Examples

Thread Safety

» Eo infra is thread safe, objects aren’t




Discussions | Examples

Thread Safety

» Eo infra is thread safe, objects aren’t

> |s there a useful case which requires we change that?




Discussions | Examples

Shared Interfaces




Discussions | Examples

Shared Interfaces

» Share most of the EFL’s functions




Discussions | Examples

Shared Interfaces

» Share most of the EFL’s functions

» Change most functions to the EFL interfaces




Discussions | Examples

Shared Interfaces

» Share most of the EFL's functions
» Change most functions to the EFL interfaces

» Forces API to be consistent




Discussions | Examples

Shared Interfaces

v

Share most of the EFL’s functions

v

Change most functions to the EFL interfaces

v

Forces API to be consistent

v

Limits the flexibility of APl (because everything is shared)




Discussions | Examples

Shared Interfaces

v

Share most of the EFL’s functions

v

Change most functions to the EFL interfaces

v

Forces API to be consistent

v

Limits the flexibility of APl (because everything is shared)

» Can cause clashes (parent class uses a function for one thing, child for another)




Discussions | Examples

Short Names




Discussions | Examples

Short Names

> efl_file_set(), efl_color_set() ...




Discussions | Examples

Short Names

> efl_file_set(), efl_color_set() ...
» C API matches OOP languages’ APl (C++, JS, Lua)




Discussions | Examples

Short Names

> efl_file_set(), efl_color_set() ...
» C API matches OOP languages’ APl (C++, JS, Lua)

» Maintain the long names (full namespacing)?




Discussions | Examples

Short Names

v

efl_file_set(), efl_color_set() ...
» C API matches OOP languages’ APl (C++, JS, Lua)

Maintain the long names (full namespacing)?

v

v

Developers seem to prefer short names (though come from OOP background)




Discussions | Examples

Short Names

v

efl_file_set(), efl_color_set() ...
» C API matches OOP languages’ APl (C++, JS, Lua)

Maintain the long names (full namespacing)?

v

v

Developers seem to prefer short names (though come from OOP background)

v

Improves API consistency (same name does the same)




Discussions | Examples

Short Names

v

efl_file_set(), efl_color_set() ...
» C API matches OOP languages’ APl (C++, JS, Lua)

Maintain the long names (full namespacing)?

v

v

Developers seem to prefer short names (though come from OOP background)

v

Improves API consistency (same name does the same)

» Have a generation pass across all eo files in efl (second stage?)




Discussions | Examples

Short Names

» efl_file_set(), efl_color_set() ...

» C API matches OOP languages’ APl (C++, JS, Lua)

» Maintain the long names (full namespacing)?

» Developers seem to prefer short names (though come from OOP background)
» Improves API consistency (same name does the same)

» Have a generation pass across all eo files in efl (second stage?)

» Detect conflicts




Discussions | Examples

Small vs. Sparse Classes




Discussions | Examples

Small vs. Sparse Classes

» Small classes that have to be fully implemented




Discussions | Examples

Small vs. Sparse Classes

» Small classes that have to be fully implemented

» Big classes with many optional properties




Discussions | Examples

Small vs. Sparse Classes

» Small classes that have to be fully implemented
» Big classes with many optional properties
> Which do we want?




Questions and Concerns | Examples

Questions or comments?







	Introduction
	Main Goals
	Other Object Systems
	What is Eo?
	Internals

	Reception
	Impact
	Eolian
	Other Projects
	EFL Interfaces
	Examples

	Questions
	Discussions
	Questions and Concerns
	Appendix

