
The EFL API in Review

Tom Hacohen
Samsung Electronics Open Source Group

tom.hacohen@samsung.com

@TomHacohen

EFL Dev Day NA 2015

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
https://www.twitter.com/TomHacohen

Introduction

Today’s Topics

I Eo recap

I Interfaces recap

I Major decisions for the future

Introduction

Today’s Topics

I Eo recap

I Interfaces recap

I Major decisions for the future

Introduction

Today’s Topics

I Eo recap

I Interfaces recap

I Major decisions for the future

Introduction

Today’s Topics

I Eo recap

I Interfaces recap

I Major decisions for the future

Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible

Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible

Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible

Main Goals

Unify Code

I Many different object systems → one

I Many different event/callback implementations → one

I Make objects compatible

Main Goals

Reducing our API

We have:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Main Goals

Reducing our API

We have:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.

Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.

Main Goals

Bindings Generation

I Be able to automatically generate for most popular languages

I Correctly handle ref counting, buffer ownership and etc.

Main Goals

Not Hurt Performance

I Not easily measurable – many changes in EFL

Main Goals

Not Hurt Performance

I Not easily measurable – many changes in EFL

Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime

Other Object Systems

Other Languages

I C++ – our developers hate it

I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime

Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime

Other Object Systems

Other Languages

I C++ – our developers hate it
I Objective C – quite ugly and not really common in OSS world

I We considered using just the runtime

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

Other Object Systems

GObject

Good:

I Fast

I Has a “C feel”

Bad:

I Doesn’t offer a stable ABI

I Funny, full of casting syntax

I “G tech” dependencies

I Didn’t exactly fit our needs

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Basics

I It’s Enlightenment’s (fairly) new object system

I Supports classes, abstract classes, mixins and interfaces

I Completely written in C (no external preprocessor)

I API/ABI stable

I Portable

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));

I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))

I eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));

I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo?

Using Eo

I eo_do(obj, efl_file_set("file.eet", "key"));
I if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))
I eo_do(obj, visible = elm_widget_visibility_get(), ←↩

elm_widget_visibility_set(!visible));
I eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

I static void size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , size_multiply (3.5));

What is Eo? | Internals

eo_do() – How It’s Done (simplified)

#define eo_do(eoid , ...) \

do { \

_eo_do_start(eoid); \

__VA_ARGS__; \

_eo_do_end (); \

} while (0)

What is Eo? | Internals

eo_do() – How It’s Done (simplified)

#define eo_do(eoid , ...) \

do { \

_eo_do_start(eoid); \

__VA_ARGS__; \

_eo_do_end (); \

} while (0)

What is Eo? | Internals

eo_do_ret() – How It’s Done (simplified)

#define eo_do_ret(eoid , ret_tmp , func) \

(\

_eo_do_start(eoid), \

ret_tmp = func , \

_eo_do_end (), \

ret_tmp \

)

What is Eo? | Internals

eo_do_ret() – How It’s Done (simplified)

#define eo_do_ret(eoid , ret_tmp , func) \

(\

_eo_do_start(eoid), \

ret_tmp = func , \

_eo_do_end (), \

ret_tmp \

)

What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

Eo##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}

What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

Eo##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}

What is Eo? | Internals

Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name , Ret , DefRet) \

Ret Name(void) \

{ \

static Eo_Op op = EO_NOOP; \

if (op == EO_NOOP) \

op = _eo_api_op_id_get ((void*) Name); \

if (! _eo_call_resolve (#Name , op , &call)) \

return DefRet; \

Eo##Name##_func _func_ = \

(_Eo_##Name##_func) call.func; \

return _func_(call.obj , call.data); \

}

What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_desc [] = {

EO_OP_FUNC(edje_obj_update_hints_set , ←↩
_edje_object_update_hints_set),

EO_OP_FUNC_OVERRIDE(eo_constructor , ←↩
_edje_object_eo_base_constructor),

EO_OP_CLASS_FUNC(eo_event_global_thaw , ←↩
_eo_base_event_global_thaw),

EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw , ←↩
_edje_object_eo_base_event_global_thaw)

};

What is Eo? | Internals

Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_desc [] = {

EO_OP_FUNC(edje_obj_update_hints_set , ←↩
_edje_object_update_hints_set),

EO_OP_FUNC_OVERRIDE(eo_constructor , ←↩
_edje_object_eo_base_constructor),

EO_OP_CLASS_FUNC(eo_event_global_thaw , ←↩
_eo_base_event_global_thaw),

EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw , ←↩
_edje_object_eo_base_event_global_thaw)

};

What is Eo? | Internals

Event Identifiers

EOAPI const Eo_Event_Description ←↩
_EO_BASE_EVENT_CALLBACK_ADD = ←↩
EO_EVENT_DESCRIPTION("callback ,add");

What is Eo? | Internals

Event Identifiers

EOAPI const Eo_Event_Description ←↩
_EO_BASE_EVENT_CALLBACK_ADD = ←↩
EO_EVENT_DESCRIPTION("callback ,add");

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

What is Eo? |

Unique Features

I Pointer indirection (at least in C)

I Multiple calls in one context

I How we do constructors (setting properties, no constructors)

I Named ref-counting

I Composite objects

I Default return values

Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)

Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)

Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)

Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)

Reception |

Wash, Rinse, Repeat

I Eo1

I Eo2

I Eolian

I Eolian (improved)

Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget

Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget

Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget

Impact |

Stability

I Pointer indirection saved us in many cases

I We caught a lot of errors that were not noticed before

I Single point of access for type checking makes it impossible to forget

Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Impact |

Reduced API

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

Now:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone

Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone

Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone

Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone

Eolian |

But writing objects in C is tedious!

I The answer: Eolian

I Eolian parses Eo API declarations

I Eolian allows for automated binding generators

I Eolian is meant to be familar for everyone

Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive

Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive

Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive

Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive

Eolian |

A new format?

I Language independent → easy bindings

I Familiar syntax → easy to pick up

I Easy to read and write

I Declarative and descriptive

class Namespace.Class (inherits) {

methods { ... }

properties { ... }

events { ... }

implements { ... }

constructors { ... }

}

type Type_Name: Type_Def;

struct Struct_Name { ... }

enum Enum_Name { ... }

methods {

method_name @class @protected {

params {

@in int x;

@out const(char) *y;

}

return: own(char*);

}

}

properties {

property_name {

keys {

list <int > *x;

}

values {

int v;

}

get {}

set {}

}

}

Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators (under development): JavaScript, Python, Rust and OCaml

Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators (under development): JavaScript, Python, Rust and OCaml

Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators (under development): JavaScript, Python, Rust and OCaml

Eolian |

Generators!

I Initial generator: C

I Further generators in core EFL: C++ and Lua

I Third party generators (under development): JavaScript, Python, Rust and OCaml

Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . .)

I Simple database

Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . .)

I Simple database

Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . .)

I Simple database

Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . .)

I Simple database

Eolian |

The Eolian library

I C API: simple and easy to use

I Minimum of non-standard data types → easy to bind

I Not only for generators (IDEs. . .)

I Simple database

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Eolian |

However. . .

I Some things are still missing

I Documentation?

I Value ownership

I And possibly others

And yet. . .

I Very useful

I Generic

I I’d like to get it adopted by others (non EFL)

Other Projects |

Clouseau

I Is there anyone who doesn’t know this one by now?
I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian

Other Projects |

Clouseau

I Is there anyone who doesn’t know this one by now?

I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian

Other Projects |

Clouseau

I Is there anyone who doesn’t know this one by now?
I Application state inspector for the EFL

I Was not created following Eo (but greatly improved)
I Will get even better with Eolian

Other Projects |

Clouseau

I Is there anyone who doesn’t know this one by now?
I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)

I Will get even better with Eolian

Other Projects |

Clouseau

I Is there anyone who doesn’t know this one by now?
I Application state inspector for the EFL
I Was not created following Eo (but greatly improved)
I Will get even better with Eolian

Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators

Other Projects |

Erigo

I EFL GUI builder

I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators

Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators

Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically

I Supports widgets that it has no notion of
I Has it’s own format that is processed by language specific code generators

Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators

Other Projects |

Erigo

I EFL GUI builder
I Reads properties from Eolian

I Supports whatever version is installed on the system automatically
I Supports widgets that it has no notion of

I Has it’s own format that is processed by language specific code generators

Other Projects |

Espion

I Goal: easily import GUIs to Erigo

I Intercepts eo_add() and eo_do()

I Uses Eolian to correctly process the calls

Other Projects |

Espion

I Goal: easily import GUIs to Erigo

I Intercepts eo_add() and eo_do()

I Uses Eolian to correctly process the calls

Other Projects |

Espion

I Goal: easily import GUIs to Erigo

I Intercepts eo_add() and eo_do()

I Uses Eolian to correctly process the calls

Other Projects |

Espion

I Goal: easily import GUIs to Erigo

I Intercepts eo_add() and eo_do()

I Uses Eolian to correctly process the calls

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces |

What is it about (again)?

I Fixing up the EFL API and inheritance

I Utilising the new Eo features

I Annotating the EFL API for generated bindings

I Creating new classes that are important for the life cycle

I “Insanely important” — Carsten Haitzler (A few hours ago)

I Everything that’s even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.

EFL Interfaces | Examples

Fixing API and Inheritance

I Making all of the Ecore * Eo objects

I Removing duplicated APIs

elm_layout_part_text_set ()

edje_object_part_text_set ()

elm_object_text_set ()

I Make Elm.Layout implement Edje.Object

EFL Interfaces | Examples

Fixing API and Inheritance

I Making all of the Ecore * Eo objects

I Removing duplicated APIs

elm_layout_part_text_set ()

edje_object_part_text_set ()

elm_object_text_set ()

I Make Elm.Layout implement Edje.Object

EFL Interfaces | Examples

Fixing API and Inheritance

I Making all of the Ecore * Eo objects

I Removing duplicated APIs

elm_layout_part_text_set ()

edje_object_part_text_set ()

elm_object_text_set ()

I Make Elm.Layout implement Edje.Object

EFL Interfaces | Examples

Fixing API and Inheritance

I Making all of the Ecore * Eo objects

I Removing duplicated APIs

elm_layout_part_text_set ()

edje_object_part_text_set ()

elm_object_text_set ()

I Make Elm.Layout implement Edje.Object

EFL Interfaces | Examples

Using Eo Features

I Moving Ecore.Animator to be a signal on the window

I Moving Ecore.Job to be a signal on the mainloop

EFL Interfaces | Examples

Using Eo Features

I Moving Ecore.Animator to be a signal on the window

I Moving Ecore.Job to be a signal on the mainloop

EFL Interfaces | Examples

Using Eo Features

I Moving Ecore.Animator to be a signal on the window

I Moving Ecore.Job to be a signal on the mainloop

EFL Interfaces | Examples

Annotating for Bindings

I Add @own to relevant parameters

I Add enums/struct definitions in .eo files (when public)

I Use correct class names instead of Eo *

EFL Interfaces | Examples

Annotating for Bindings

I Add @own to relevant parameters

I Add enums/struct definitions in .eo files (when public)

I Use correct class names instead of Eo *

EFL Interfaces | Examples

Annotating for Bindings

I Add @own to relevant parameters

I Add enums/struct definitions in .eo files (when public)

I Use correct class names instead of Eo *

EFL Interfaces | Examples

Annotating for Bindings

I Add @own to relevant parameters

I Add enums/struct definitions in .eo files (when public)

I Use correct class names instead of Eo *

EFL Interfaces | Examples

New Classes

I Mainloop object

I Application object

EFL Interfaces | Examples

New Classes

I Mainloop object

I Application object

EFL Interfaces | Examples

New Classes

I Mainloop object

I Application object

Questions | Examples

Questions so far?

Discussions | Examples

Nullability

I Change and split @notnull to @nullable and @optional

I Very useful for languages that support this notion (e.g. Rust and C++)

I Leads to safer code and more information about types

I Side effect: stop using EINA_ARG_NONNULL

Discussions | Examples

Nullability

I Change and split @notnull to @nullable and @optional

I Very useful for languages that support this notion (e.g. Rust and C++)

I Leads to safer code and more information about types

I Side effect: stop using EINA_ARG_NONNULL

Discussions | Examples

Nullability

I Change and split @notnull to @nullable and @optional

I Very useful for languages that support this notion (e.g. Rust and C++)

I Leads to safer code and more information about types

I Side effect: stop using EINA_ARG_NONNULL

Discussions | Examples

Nullability

I Change and split @notnull to @nullable and @optional

I Very useful for languages that support this notion (e.g. Rust and C++)

I Leads to safer code and more information about types

I Side effect: stop using EINA_ARG_NONNULL

Discussions | Examples

Nullability

I Change and split @notnull to @nullable and @optional

I Very useful for languages that support this notion (e.g. Rust and C++)

I Leads to safer code and more information about types

I Side effect: stop using EINA_ARG_NONNULL

Discussions | Examples

Thread Safety

I Eo infra is thread safe, objects aren’t

I Is there a useful case which requires we change that?

Discussions | Examples

Thread Safety

I Eo infra is thread safe, objects aren’t

I Is there a useful case which requires we change that?

Discussions | Examples

Thread Safety

I Eo infra is thread safe, objects aren’t

I Is there a useful case which requires we change that?

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Shared Interfaces

I Share most of the EFL’s functions

I Change most functions to the EFL interfaces

I Forces API to be consistent

I Limits the flexibility of API (because everything is shared)

I Can cause clashes (parent class uses a function for one thing, child for another)

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Short Names

I efl_file_set(), efl_color_set() . . .

I C API matches OOP languages’ API (C++, JS, Lua)

I Maintain the long names (full namespacing)?

I Developers seem to prefer short names (though come from OOP background)

I Improves API consistency (same name does the same)

I Have a generation pass across all eo files in efl (second stage?)

I Detect conflicts

Discussions | Examples

Small vs. Sparse Classes

I Small classes that have to be fully implemented

I Big classes with many optional properties

I Which do we want?

Discussions | Examples

Small vs. Sparse Classes

I Small classes that have to be fully implemented

I Big classes with many optional properties

I Which do we want?

Discussions | Examples

Small vs. Sparse Classes

I Small classes that have to be fully implemented

I Big classes with many optional properties

I Which do we want?

Discussions | Examples

Small vs. Sparse Classes

I Small classes that have to be fully implemented

I Big classes with many optional properties

I Which do we want?

Questions and Concerns | Examples

Questions or comments?

Resources Attributions | Examples

I Nothing

	Introduction
	Main Goals
	Other Object Systems
	What is Eo?
	Internals

	Reception
	Impact
	Eolian
	Other Projects
	EFL Interfaces
	Examples

	Questions
	Discussions
	Questions and Concerns
	Appendix

