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Today's Topics

» Eo recap
» Interfaces recap

» Major decisions for the future
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Main Goals
Unify Code

» Many different object systems — one
» Many different event/callback implementations — one

» Make objects compatible
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Reducing our API

We have:

evas_object_image_file_set(obj, "blah.png", “key");
edje_object_file_set (obj, "blah.edj", "group");

evas_object_del (obj) ;
ecore_timer_del (obj);
ecore_animator_del (obj);
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Main Goals

Bindings Generation

> Be able to automatically generate for most popular languages

» Correctly handle ref counting, buffer ownership and etc.
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Not Hurt Performance

» Not easily measurable — many changes in EFL
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Other Languages

» C++ — our developers hate it
» Objective C — quite ugly and not really common in OSS world
» We considered using just the runtime
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Other Object Systems

GObject

Good:

» Fast

» Has a “C feel”

Bad:
Doesn't offer a stable ABI

v

v

Funny, full of casting syntax

v

"G tech” dependencies

v

Didn’t exactly fit our needs
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Basics

v

It's Enlightenment’s (fairly) new object system

v

Supports classes, abstract classes, mixins and interfaces

v

Completely written in C (no external preprocessor)
API/ABI stable
Portable

v

v
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What is Eo?
Using Eo

» eo_do(obj, efl_file_set("file.eet", "key"));

> if (eo_do_ret(obj, tmp, elm_widget_enabled_get()))

» eo_do(obj, visible = elm_widget_visibility_get(), <«
elm_widget_visibility_set(!visible));

> eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

» static void size_multiply(double f£f)

{
int w, h;
evas_object_geometry_get (NULL, NULL, &w, &h);
evas_object_geometry_set (NULL, NULL, w * f, h *x f);
}

eo_do(obj, size_multiply(3.5));
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eo_do() — How It's Done (simplified)

#tdefine eo_do(eoid, ...) \

do { \
_eo_do_start(eoid); \
__VA_ARGS__; \
_eo_do_end () ; \

} while (0)
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What is Eo? | Internals

eo_do_ret () — How It's Done (simplified)

#define eo_do_ret(eoid, ret_tmp, func) \
(
_eo_do_start (eoid),
ret_tmp = func,
_eo_do_end (),
ret_tmp

s
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Defining New Functions (simplified)

EOAPI EO_FUNC_BODY(eo_parent_get, Eo *, NULL);

#define EO_FUNC_BODY(Name, Ret, DefRet)
Ret Name (void)
{
static Eo_Op op = EO_NOOP;
if (op == EO_NOOP)
op = _eo_api_op_id_get ((voidx*) Name) ;

if (!_eo_call_resolve (#Name, op, &call))
return DefRet;

_Eo_##Name## _func _func_ =
(_Eo_##Name##_func) call.func;

return _func_(call.obj, call.data);

P A L A
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Defining New Classes (simplified)

Populating a struct with some metadata

static Eo_Op_Description _edje_object_op_descl[] = {
EO_OP_FUNC(edje_obj_update_hints_set, <
_edje_object_update_hints_set),
EO_OP_FUNC_OVERRIDE (eo_constructor , <
_edje_object_eo_base_constructor),
E0O_OP_CLASS_FUNC(eo_event_global_thaw, ¢
_eo_base_event_global_thaw),
EO_OP_CLASS_OVERRIDE_FUNC(eo_event_global_thaw, ¢
_edje_object_eo_base_event_global_thaw)
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Event Identifiers

EOAPI const Eo_Event_Description <
_E0O_BASE_EVENT_CALLBACK_ADD = <>
EO_EVENT_DESCRIPTION("callback,add");
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Unique Features

v

Pointer indirection (at least in C)

v

Multiple calls in one context

v

How we do constructors (setting properties, no constructors)

v

Named ref-counting

v

Composite objects

Default return values

v
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Wash, Rinse, Repeat

» Eol
» Eo2

Eolian

v

v

Eolian (improved)
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Stability

» Pointer indirection saved us in many cases
» We caught a lot of errors that were not noticed before

» Single point of access for type checking makes it impossible to forget

Open Source Group



Impact |

Reduced API




Impact |

Reduced API

Before:

evas_object_image_file_set(obj, "blah.png", "key");
edje_object_file_set(obj, "blah.edj", ”group");

evas_object_del (obj);
ecore_timer_del (obj);
ecore_animator_del (obj);




Impact |

Reduced API

Before:
evas_object_image_file_set (obj, "blah.png", "key");
edje_object_file_set (obj, "blah.edj", "group");

evas_object_del (obj);
ecore_timer_del (obj);
ecore_animator_del (obj);

Now:

eo_do(obj, efl_file_set("blah.file", "key"));

eo_del (obj);
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But writing objects in C is tedious!

v

The answer: Eolian

v

Eolian parses Eo API declarations

v

Eolian allows for automated binding generators

v

Eolian is meant to be familar for everyone
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Eolian |

A new format?

v

Language independent — easy bindings

v

Familiar syntax — easy to pick up

v

Easy to read and write

v

Declarative and descriptive




class Namespace.Class (inherits) {

methods { ... 1}
properties { ... }
events { ... }
implements { ... }
constructors { ... }

type Type_Name: Type_Def;
struct Struct_Name { ... }
enum Enum_Name { ... 7}




methods {
method_name G@class G@protected {
params {
@in int x;
Q@out const(char) x*y;
}

return: own(charx*) ;




properties {
property_name {
keys {
list<int> *x;
}
values {
int v;
}
get {}
set {%}
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Generators!

> Initial generator: C
» Further generators in core EFL: C++ and Lua
» Third party generators (under development): JavaScript, Python, Rust and OCaml
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The Eolian library

» C API: simple and easy to use

» Minimum of non-standard data types — easy to bind

v

Not only for generators (IDEs...)

v

Simple database
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However. . .

v

Some things are still missing

» Documentation?

v

Value ownership

v

And possibly others

And vyet. ..

» Very useful
» Generic
» I'd like to get it adopted by others (non EFL)
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Other Projects |
Clouseau

Is there anyone who doesn’t know this one by now?
Application state inspector for the EFL

Was not created following Eo (but greatly improved)
Will get even better with Eolian

vV vyYyysy
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Other Projects |
Erigo

» EFL GUI builder

» Reads properties from Eolian
» Supports whatever version is installed on the system automatically
» Supports widgets that it has no notion of

» Has it's own format that is processed by language specific code generators

Open Source Group
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Other Projects |

Espion

» Goal: easily import GUIs to Erigo
» Intercepts eo_add() and eo_do()
» Uses Eolian to correctly process the calls
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What is it about (again)?

» Fixing up the EFL API and inheritance

» Utilising the new Eo features

» Annotating the EFL API for generated bindings

» Creating new classes that are important for the life cycle

» “Insanely important” — Carsten Haitzler (A few hours ago)

» Everything that's even remotely related to Eo and EFL API and is dumped upon this
task arbitrarily.
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Fixing APl and Inheritance

» Making all of the Ecore_* Eo objects
» Removing duplicated APlIs

elm_layout_part_text_set ()
edje_object_part_text_set ()
elm_object_text_set ()

> Make Elm.Layout implement Edje.Object




EFL Interfaces | Examples

Using Eo Features




EFL Interfaces | Examples

Using Eo Features

> Moving Ecore.Animator to be a signal on the window




EFL Interfaces | Examples

Using Eo Features

> Moving Ecore.Animator to be a signal on the window

» Moving Ecore.Job to be a signal on the mainloop
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EFL Interfaces | Examples

Annotating for Bindings

» Add @own to relevant parameters
» Add enums/struct definitions in .eo files (when public)

» Use correct class names instead of Eo *
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EFL Interfaces | Examples

New Classes

» Mainloop object

> Application object
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Questions so far?
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Nullability

v

Change and split @notnull to @nullable and @optional

v

Very useful for languages that support this notion (e.g. Rust and C++)

v

Leads to safer code and more information about types
Side effect: stop using EINA_ARG_NONNULL

v
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Thread Safety

» Eo infra is thread safe, objects aren’t

> |s there a useful case which requires we change that?
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Shared Interfaces

v

Share most of the EFL’s functions

v

Change most functions to the EFL interfaces

v

Forces API to be consistent

v

Limits the flexibility of APl (because everything is shared)

» Can cause clashes (parent class uses a function for one thing, child for another)
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Short Names

» efl_file_set(), efl_color_set() ...

» C API matches OOP languages’ APl (C++, JS, Lua)

» Maintain the long names (full namespacing)?

» Developers seem to prefer short names (though come from OOP background)
» Improves API consistency (same name does the same)

» Have a generation pass across all eo files in efl (second stage?)

» Detect conflicts
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Small vs. Sparse Classes

» Small classes that have to be fully implemented
» Big classes with many optional properties
> Which do we want?
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Questions or comments?
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