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Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)



How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)



How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)



How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)



How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)



Unifying the EFL API (AKA EFL Interfaces)

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

After:

eo_do(obj , efl_file_set("blah.file", "key"));
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Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.
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Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));
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static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));
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class Namespace.Class (inherits) {

methods { ... }

properties { ... }

events { ... }

implements { ... }

constructors { ... }

}

type Type_Name: Type_Def;

struct Struct_Name { ... }

enum Enum_Name { ... }



methods {

method_name @class @protected {

params {

@in int x;

@out const(char) *y;

}

return: own(char*);

}

}



properties {

property_name {

keys {

list <int > *x;

}

values {

int v;

}

get {}

set {}

}

}
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Lua review
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local util = require("util")

... more utils follow ...

local M, __lib = ...

local __class , __body

-- init func registers the class with __body

cutil.init_module(init_func , shutdown_func)

ffi.cdef [[ C API definitions in C syntax ]]

__body = { ... wrapper funcs over C API funcs ... }

M.My_Class = function(parent , ...)

... construct the instance and return it , like C ←↩
would ...

end



local elm = require("elm")

local win = elm.Window(nil , "mywin", elm.win_type.BASIC)

win.autodel = false

win.size = { 500, 500 }

win:connect("delete ,request", function () ... event ... ←↩
end)

win:resize_object_add(obj)

...



Python
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So compiled. . . :(
Will be fixed. . . FFI!
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How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)
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DEMOS



What’s next?



More bindings!



Making bindings embeddable



Use Eolian to do more

The EFL GUI builder - already there

Clouseau - not yet
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Questions?

Tom Hacohen Daniel Kolesa
tom.hacohen@samsung.com d.kolesa@samsung.com

http://stosb.com http://octaforge.org

@TomHacohen @Octaforge

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
mailto:Daniel%20Kolesa%20<tom.hacohen@samsung.com>
http://stosb.com
http://octaforge.org
https://www.twitter.com/TomHacohen
https://www.twitter.com/octaforge
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