
Review of Eolian, Eo, Bindings, Interfaces and What’s to Come

Tom Hacohen <tom.hacohen@samsung.com>

Daniel Kolesa <d.kolesa@samsung.com>

Enlightenment Developer Day 2004

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
mailto:Daniel%20Kolesa%20<tom.hacohen@samsung.com>

What is Eo?

Existing solutions?

GObjecct

libobjc

systemd

Existing solutions?

GObjecct

libobjc

systemd

Existing solutions?

GObjecct

libobjc

systemd

Existing solutions?

GObjecct

libobjc

systemd

Why roll our own?

How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)

How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)

How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)

How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)

How we did it?

A lot of prototyping → Eo1

A lot of complaints and hate-mail → Eo2

Got annoyed with writing boiler-plate → Eolian

Eolian didn’t cover everything we needed → Eolian (current iteration)

Unifying the EFL API (AKA EFL Interfaces)

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

After:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Unifying the EFL API (AKA EFL Interfaces)

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

After:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Unifying the EFL API (AKA EFL Interfaces)

Before:

evas_object_image_file_set(obj , "blah.png", "key");

edje_object_file_set(obj , "blah.edj", "group");

evas_object_del(obj);

ecore_timer_del(obj);

ecore_animator_del(obj);

After:

eo_do(obj , efl_file_set("blah.file", "key"));

eo_del(obj);

Object lifetime

eo_add() has a C friendly refcount handling

eo_add() ↔ eo_del()

eo_ref() ↔ eo_unref()

Object lifetime

eo_add() has a C friendly refcount handling

eo_add() ↔ eo_del()

eo_ref() ↔ eo_unref()

Object lifetime

eo_add() has a C friendly refcount handling

eo_add() ↔ eo_del()

eo_ref() ↔ eo_unref()

Object lifetime

eo_add() has a C friendly refcount handling

eo_add() ↔ eo_del()

eo_ref() ↔ eo_unref()

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Safety features

Pointer indirection (eo id)

Object type checks when calling functions

Default return values on errors

For example:

ERR <32099 >:eo eo_ptr_indirection.x:287 ←↩
_eo_obj_pointer_get () obj_id 0x13371337 is not ←↩
pointing to a valid object. Maybe it has already been ←↩
freed.

ERR <32124 >:eo eo_private.h:283 _eo_unref () Object ←↩
0xDEADBEEF already deleted.

Class types

Normal class

Non instantiate-able class

Interface

Mixin

Class types

Normal class

Non instantiate-able class

Interface

Mixin

Class types

Normal class

Non instantiate-able class

Interface

Mixin

Class types

Normal class

Non instantiate-able class

Interface

Mixin

Class types

Normal class

Non instantiate-able class

Interface

Mixin

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

Using Eo

eo_do(obj, efl_file_set("file.eet", "key"));

if (eo_do(obj, elm_widget_enabled_get()))

eo_do(obj, visible = elm_widget_visibility_get(), ←↩
elm_widget_visibility_set(!visible));

eo_do(obj, elm_widget_visibility_set(!elm_widget_visibility_get()));

static void _size_multiply(double f)

{

int w, h;

evas_object_geometry_get(NULL , NULL , &w, &h);

evas_object_geometry_set(NULL , NULL , w * f, h * f);

}

eo_do(obj , _size_multiply (3.5));

The Eolian library

But writing objects in C is tedious!

The answer: Eolian

Eolian parses Eo API declarations

Eolian allows for automated binding generators

Eolian is meant to be familar for everyone

But writing objects in C is tedious!

The answer: Eolian

Eolian parses Eo API declarations

Eolian allows for automated binding generators

Eolian is meant to be familar for everyone

But writing objects in C is tedious!

The answer: Eolian

Eolian parses Eo API declarations

Eolian allows for automated binding generators

Eolian is meant to be familar for everyone

But writing objects in C is tedious!

The answer: Eolian

Eolian parses Eo API declarations

Eolian allows for automated binding generators

Eolian is meant to be familar for everyone

But writing objects in C is tedious!

The answer: Eolian

Eolian parses Eo API declarations

Eolian allows for automated binding generators

Eolian is meant to be familar for everyone

A new format?

Language independent → easy bindings

Familiar syntax → easy to pick up

Easy to read and write

Declarative and descriptive

A new format?

Language independent → easy bindings

Familiar syntax → easy to pick up

Easy to read and write

Declarative and descriptive

A new format?

Language independent → easy bindings

Familiar syntax → easy to pick up

Easy to read and write

Declarative and descriptive

A new format?

Language independent → easy bindings

Familiar syntax → easy to pick up

Easy to read and write

Declarative and descriptive

A new format?

Language independent → easy bindings

Familiar syntax → easy to pick up

Easy to read and write

Declarative and descriptive

class Namespace.Class (inherits) {

methods { ... }

properties { ... }

events { ... }

implements { ... }

constructors { ... }

}

type Type_Name: Type_Def;

struct Struct_Name { ... }

enum Enum_Name { ... }

methods {

method_name @class @protected {

params {

@in int x;

@out const(char) *y;

}

return: own(char*);

}

}

properties {

property_name {

keys {

list <int > *x;

}

values {

int v;

}

get {}

set {}

}

}

Generators!

Initial generator: C

Further generators in core EFL: C++ and Lua

Third party generators: Python, efforts being put into Rust, OCaml

Future generators include JavaScript and others

Generators!

Initial generator: C

Further generators in core EFL: C++ and Lua

Third party generators: Python, efforts being put into Rust, OCaml

Future generators include JavaScript and others

Generators!

Initial generator: C

Further generators in core EFL: C++ and Lua

Third party generators: Python, efforts being put into Rust, OCaml

Future generators include JavaScript and others

Generators!

Initial generator: C

Further generators in core EFL: C++ and Lua

Third party generators: Python, efforts being put into Rust, OCaml

Future generators include JavaScript and others

Generators!

Initial generator: C

Further generators in core EFL: C++ and Lua

Third party generators: Python, efforts being put into Rust, OCaml

Future generators include JavaScript and others

The Eolian library

C API: simple and easy to use

Minimum of non-standard data types → easy to bind

Not only for generators (IDEs...)

Simple database

The Eolian library

C API: simple and easy to use

Minimum of non-standard data types → easy to bind

Not only for generators (IDEs...)

Simple database

The Eolian library

C API: simple and easy to use

Minimum of non-standard data types → easy to bind

Not only for generators (IDEs...)

Simple database

The Eolian library

C API: simple and easy to use

Minimum of non-standard data types → easy to bind

Not only for generators (IDEs...)

Simple database

The Eolian library

C API: simple and easy to use

Minimum of non-standard data types → easy to bind

Not only for generators (IDEs...)

Simple database

However...

Some things still missing

Documentation?

Value ownership

And possibly others

However...

Some things still missing

Documentation?

Value ownership

And possibly others

However...

Some things still missing

Documentation?

Value ownership

And possibly others

However...

Some things still missing

Documentation?

Value ownership

And possibly others

However...

Some things still missing

Documentation?

Value ownership

And possibly others

Lua review

The Lua generator

Third generator (after C and C++) → Lua

Built around our Elua application runtime

Itself a Lua application

Helped the Eolian C library go forward

The Lua generator

Third generator (after C and C++) → Lua

Built around our Elua application runtime

Itself a Lua application

Helped the Eolian C library go forward

The Lua generator

Third generator (after C and C++) → Lua

Built around our Elua application runtime

Itself a Lua application

Helped the Eolian C library go forward

The Lua generator

Third generator (after C and C++) → Lua

Built around our Elua application runtime

Itself a Lua application

Helped the Eolian C library go forward

The Lua generator

Third generator (after C and C++) → Lua

Built around our Elua application runtime

Itself a Lua application

Helped the Eolian C library go forward

The FFI

LuaJIT C FFI → simple bindings

Simple bindings → easy debugging

Also, no compiled modules

Also, simple generation

The FFI

LuaJIT C FFI → simple bindings

Simple bindings → easy debugging

Also, no compiled modules

Also, simple generation

The FFI

LuaJIT C FFI → simple bindings

Simple bindings → easy debugging

Also, no compiled modules

Also, simple generation

The FFI

LuaJIT C FFI → simple bindings

Simple bindings → easy debugging

Also, no compiled modules

Also, simple generation

The FFI

LuaJIT C FFI → simple bindings

Simple bindings → easy debugging

Also, no compiled modules

Also, simple generation

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

The infrastructure

Handwritten Eo bindings

No object wrappers, FFI metatypes instead

Builtin method dispatch via metatables

Eo inheritance and reference management

No wrappers → fast, simple, no tracking

local util = require("util")

... more utils follow ...

local M, __lib = ...

local __class , __body

-- init func registers the class with __body

cutil.init_module(init_func , shutdown_func)

ffi.cdef [[C API definitions in C syntax]]

__body = { ... wrapper funcs over C API funcs ... }

M.My_Class = function(parent , ...)

... construct the instance and return it , like C ←↩
would ...

end

local elm = require("elm")

local win = elm.Window(nil , "mywin", elm.win_type.BASIC)

win.autodel = false

win.size = { 500, 500 }

win:connect("delete ,request", function () ... event ... ←↩
end)

win:resize_object_add(obj)

...

Python

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . . FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . .

FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . .

FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(

Will be fixed. . .

FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . .

FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . .

FFI!

The Python generator

Handwritten Eo bindings

A Python script generates Cython code

So compiled. . . :(
Will be fixed. . . FFI!

The Python bindings

Native Python classes and inheritance

Native Python properties

Native Python modules

Everything feels native

The Python bindings

Native Python classes and inheritance

Native Python properties

Native Python modules

Everything feels native

The Python bindings

Native Python classes and inheritance

Native Python properties

Native Python modules

Everything feels native

The Python bindings

Native Python classes and inheritance

Native Python properties

Native Python modules

Everything feels native

The Python bindings

Native Python classes and inheritance

Native Python properties

Native Python modules

Everything feels native

How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)

How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)

How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)

How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)

How to use?

Native Python. . .

Properties

from elementary import Win

win = Win(parent , "win name", Win.ELM_WIN_BASIC)

win.size = (600, 600)

win.visibility = True

Methods

win.resize_object_add(obj)

Callbacks

obj.connect("mouse ,down", some_callable)

But what about the current bindings?

Incompatible. :(

Kai wants to write a compatibility layer

But what about the current bindings?

Incompatible. :(

Kai wants to write a compatibility layer

But what about the current bindings?

Incompatible. :(

Kai wants to write a compatibility layer

DEMOS

What’s next?

More bindings!

Making bindings embeddable

Use Eolian to do more

The EFL GUI builder - already there

Clouseau - not yet

Ideas?

Use Eolian to do more

The EFL GUI builder - already there

Clouseau - not yet

Ideas?

Use Eolian to do more

The EFL GUI builder - already there

Clouseau - not yet

Ideas?

Use Eolian to do more

The EFL GUI builder - already there

Clouseau - not yet

Ideas?

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object

ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win

ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions

Correct classification by inheritance

EFL interfaces

Eoify more of the EFL

ecore_mainloop → Eo object
ecore_animator → event on Elm Win
ecore_job → event on the mailoop

Use advance Eo features

Gesture layer API can be mostly trimmed (events tracking)

Improve existing API

Common interfaces for highly redundant functions
Correct classification by inheritance

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online? Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online?

Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online?

Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online?

Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online?

Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online?

Comments like php.net?

Documentation

1st class citizen

Support Eolian features

Write once, use everywhere

Editable online? Comments like php.net?

Questions?

Tom Hacohen Daniel Kolesa
tom.hacohen@samsung.com d.kolesa@samsung.com

http://stosb.com http://octaforge.org

@TomHacohen @Octaforge

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
mailto:Daniel%20Kolesa%20<tom.hacohen@samsung.com>
http://stosb.com
http://octaforge.org
https://www.twitter.com/TomHacohen
https://www.twitter.com/octaforge

Resources Attributions

Page ??, resources/brewing_ifaces.png

Page 2, resources/expert-beerpong.jpg

Page 37, resources/one_syntax.jpg

Page 66, resources/lua_beer.jpg

Page 85, resources/python_cat.jpg

Page 106, resources/pro_beer.jpg

Page 107, resources/dessert.jpg

http://upload.wikimedia.org/wikipedia/commons/d/db/Herstellung_K%C3%B6stritzer_Brauerei.JPG
http://cl.jroo.me/z3/o/4/q/d/a.aaa-Who-want-to-play-beer-pong.jpg
http://2.bp.blogspot.com/-_KXFOg_GSTc/T-BmaXiqSRI/AAAAAAAABSY/cBMIXVgsPTc/s1600/P1010030.JPG
http://www.wallpapervortex.com/wallpaper-22917_3d_space_scene_astronaut_chilling_on_the_moon_with_beer.html
http://i76.photobucket.com/albums/j9/terranaut0/photo-113.jpg
https://reposti.com/i/m/cc5.jpg
http://upload.wikimedia.org/wikipedia/commons/6/6b/Kaiserschmarrn-mitPreiselbeeren.jpg

	Eo
	Eolian
	Lua Review
	Python Review
	Bindings Demo
	Future
	Questions
	Appendix

