@ Etebase

Your End-to-End Encrypted Backend

Building encrypted applications has never been easier

Tom Hacohen tom@etebase.com
FOSDEM 2021 @TomHacohen


mailto:Tom%20Hacohen%20%3Ctom@etebase.com%3E
https://twitter.com/TomHacohen

Some Background

e Creator and maintainer of Etebase & EteSync
e Etebase is an SDK for building end-to-end encrypted applications
e EteSyncis a set of end-to-end encrypted apps built using Etebase



The problem:

Our data is exposed!

ik

Server Employees
A &
. VU

. fi
Hacker Thief




Solution #1

Self-host everything, but...

Hosting at home is not always feasible (e.g. CGNAT)
Hosting on a VPS is still someone else's server
Requires constant security maintenance and backups
Only accessible to techies

The cloud is convenient and cheap




Solution #2
End-to-end encrypt everything!

| 99
& i o

. H

Alice Server

With end-to-end encryption your data is safe




Common encryption misconceptions

My data is private, because:

e It's encrypted using 256bit TLS!
e |It's encrypted at rest using AES!
e It's encrypted in transit and at rest!




But wait, encryption is hard...

Easy to get wrong - partially solved by libsodium
How do you implement sharing? Access control?
How do you implement password changes?

How do you ensure integrity? Conflict resolution?
What about performance?



https://libsodium.org/

Solution: Etebase!

Securely encrypt and upload your data with only a few lines of code.

etebase = Etebase.Account.login( ,
collectionManager = etebase.getCollectionManager();
collection = collectionManager.create(

{ name:

)i
collectionManager.upload(collection);

=E=ERI® 0@ H @40




Key features and capabilities

e Libraries for a variety of programming languages
e Zero cryptography knowledge needed

e Afull revision history of all your data

e Automatic data de-duplication

e Easy collaboration (sharing)

e And more...



Used in projects such as...

K11 4

@ GNOME  3I§ KDE

/ Tasks.org @EteSync



How does it work?



Key components

Account - a user on the Etebase server

Collection - a collection of items (e.g. a filesystem)
Item - what holds the actual data (e.g. files)

Revisions - a state of the item at a single pointin time
stoken - a token representing a point in time



Data structure

| | |
Collection Collection Collection
| |

| | | | | | |




Account

e Main entry point for the Etebase user
e Login, signup, logout, and etc.
e You only have one password

Request Challenge

Return Challenge

%

Sign Challenge
Auth token

Server




Collection

A collection of items

Have a unique UID

Associated metadata e.g:

= Name

» description

Immutable CollectionType

= Used to filter collections by usage
Optional content



[tem

e Almost all of the data in Etebase is stored in items
e Have aunique UID
e Also have associated metadata e.g:
= name
» description
e Optional content
e Optional revision history



stoken

Represents a point in time of the data
Used for efficient syncing (only sync changes)
Used for integrity checks




Multiple accounts (sharing)

_

|
| |
Collection Collection == Collection
| |
| | | | | | |




Structuring the data



As a full state sync protocol

e The easiest most common way
e Sync all of the data across devices
e Always fetch the whole data
= Use sync tokens to only fetch changes



Hierarchical item structure

e When you don't want to sync all of the data
= E.g. when syncing a large filesystem
e Fetch items by UIDs



Let's build a note taking app!
Well, it's a lightning talk, so just the Etebase parts...



Structuring the data

e Use the note specifications from the docs
e Collection is a notebook
= Can be shared with other users
» CollectionType: etebase.md.note
= name: the name of the notebook
e |tems are notes in Markdown:
= type:null
= name: the title of the note


https://docs.etebase.com/type-sepcs/notes

Signup and login

Signup

const etebase = awalt Etebase.Account.signup({
username: '"username",
email: "email"

}, "password", serverUrl);

Login

const etebase = awalt Etebase.Account. login("username", "password", serverUrl);



Create a notebook

const collectionManager = etebase.getCollectionManager();

const collection = await collectionManager.create('"etebase.md.note",

{

name: "My Notes",
mtime: (new Date()).getTime(),

I
" // Empty content

),

// Upload the collection to server
await collectionManager.upload(collection);



Create a note

// Using the collection from earlier
const itemManager = collectionManager.getItemManager(collection);

// Create, encrypt and upload a new item
const item = await itemManager.create(
{
name: "Shopping list",
mtime: (new Date()).getTime(),

I
"- [X] Apples\n- [ ] Oranges", // Comes from the user

),

// Batch upload of items (just one this time)
awalt itemManager.batch([item]);



Fetching notebooks

// The stoken we got from a previous fetch

let stoken = localStorage.getItem('"stoken");
let done = false;

while ('!'done) {

const collections = await collectionManager. list(
"etebase.md.note", { stoken, limit: 30 });

processChangedCollections(collections.data);

stoken = collections.stoken;
done = collections.done;

}

localStorage.setltem('"stoken", stoken); // Persist stoken



Fetching notes

// The stoken we got from a previous fetch

let stoken = localStorage.getItem( stoken.${collection.uid} );
let done = false;

while (!'done) {

const items = awalt itemManager.list({ stoken, limit: 30 });

processChangedItems(items.data);

stoken = items.stoken;
done = items.done;

}

localStorage.setItem( stoken.${collection.uid} , stoken); // Persist stoken



Realtime subscriptions

const itemManager = collectionManager.getItemManager(collection);

const subscription = await itemManager.subscribeChanges((items) => {
processChangedItems(items.data);
localStorage.setltem( stoken.${collection.uid} , stoken); // Persist stoken

1),



Caching notes locally

Collections

// The cache blob is just a Uint8Array that can be saved for later use
const cacheBlob = collectionManager.cacheSave(collection);

// Later on we can load the object back
const collection = collectionManager.cacheLoad(cacheBlob);

ltems

// The cache blob 1s just a Uint8Array that can be saved for later use
const cacheBlob = itemManager.cacheSave(item);

// Later on we can load the object back
const item = itemManager.cachelLoad(cacheBlob);



And now it's time to logout...

awalt etebase. logout();



Closing words

Developer looking to secure user data?

Comec

Using apps that cou

nat with us!

d

Let us (and t

nenefit from Etebase?

nem) know!



Questions?

Etebase: https://www.etebase.com

Sources: https://github.com/etesync/

Docs: https://docs.etebase.com

Chat: https://www.etebase.com/community-chat/
EteSync: https://www.etesync.com


https://www.etebase.com/
https://github.com/etesync/
https://docs.etebase.com/
https://www.etebase.com/community-chat/
https://www.etesync.com/

