
Case Study:
How We Migrated the Enlightenment Project to Git

Tom Hacohen <tom.hacohen@samsung.com>

http://stosb.com @TomHacohen

SOSCON Seoul 2014

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
http://stosb.com
https://www.twitter.com/TomHacohen


Introduction | Why We Switched

What Made Us Go Through All the Trouble?

We had some free time

Already using Git-svn

Back-porting patches was a pain

Our development process was annoying and inefficient

It was hard for downstream (e.g. Tizen) projects to stay in sync



Introduction | Why We Switched

“quick - evas scalecache put this in svn do i dont lose my patch.
i’ll revert and work on gettign the leak fixed.”

— Carsten Haitzler



Introduction | Git vs. SVN

Comparison of Git and SVN

Git:

+ Leads to better commits (and messages) compared to SVN

Reorganise your commits after you are done (git rebase -i)
Split commits while working

+ Can work off-line seamlessly

+ Branches and tags are cheap

+ Attribution is built-in – Includes name and email

+ Supports multiple remotes



Introduction | Git vs. SVN

Comparison of Git and SVN (2)

Git (2):

+ Popular – Many already use it (thanks to Github)

+ Fast

+ Back/forward-porting is easy

+ De facto industry standard

+ AWESOME

– Some inconsistent commands

https://www.github.com


Introduction | Git vs. SVN

Comparison of Git and SVN (3)

SVN:

+ Linear revision numbers

In Git: git rev-list --count HEAD

+ Makes it harder for people to do drive-by/spray commits

In Git: just add a rule to Gitolite to disallow it

– No diffs for binary files

– Load on the server



Infrastructure

“revert test commit. SVN e/trunk/efl is not locked?”

— Daniel Juyung Seo



Infrastructure | Gitolite

Access Control for Git, through Git

Very fine-grained control

Users and repos can be grouped

Limit access based on users/groups

Prevent operations (e.g. branch
creation)

Limit access to branches

Limit access based on file/directory

Deploys hooks

Controls per-repo configuration

- Branches devs/devname/* are user-owned
- Can’t rewind <reponame>-version and master



Infrastructure | Gitolite

Gitolite (2)

Secure

SSH login – restricted to gitolite-shell

Forces usage of public key authentication
One low privilege user
Managed using Git – access is cryptographically hashed

Integrates with CGit (web viewer) and git-daemon for public repos

Developer-owned repositories and branches (playground)



Infrastructure | Our Setup

Managing Gitolite Users (Our Setup)

admin/devs.git repository:

Remnant from our very early days – still used for access control

Includes extra developer information (e.g. name and email)

Different directories for different access levels

Three access levels: Probie, Developer and Maintainer



Infrastructure | Gitolite Tips

Gitolite Tips

Make sure you use Gitolite 3.

You can split group definitions to multiple lines!

@some_group = repo1 repo2 repo3

@some_group = repo4 repo5

Gitolite supports macros and includes

Read about VREFs

Avoid Git hooks, VREFs can be used instead



Migrating the Repositories

“Revert previous commit. Damn svn, didn’t mean to delete the whole
dir.”

— Tom Hacohen



Migrating the Repositories | Migration Goals

Migration Goals

Retain all the history since the dawn of time

Except when history is doubleplusungood

Use Git’s own branches and tags

Make Git commands work as expected

Fix attribution



Migrating the Repositories | Pre-migration

Repository Layout

SVN

trunk/

edje/

eina/

enlightenment/

evas/

BINDINGS/

python -efl/

efl_cpp/

OLD/

THEMES/

dark/

...

Git

core/efl.git

core/enlightenment.git

bindings/python.git

bindings/cpp.git

legacy/evas.git

legacy/eina.git

legacy/edje.git

...



Migrating the Repositories | Pre-migration

Git Migration Tools

git fast-import

git svn

git filter-branch

Git grafts



Migrating the Repositories | Pre-migration

Why not git fast-import?

git svn already does most of the work
Would have to rewrite SVN commit parsing



Migrating the Repositories | Preparations

Starting with the Migration

We have a nice README

Clone the repository:
> git svn clone --use-log-author http://svnrepo/trunk

Limit the repo to a subdirectory (optional):
> git filter-branch --prune-empty -f --subdirectory-filter ←↩
subdirectory

https://git.enlightenment.org/devs/asdfuser/migration.git/tree/README


Migrating the Repositories | Attribution

Fixing Attribution

Transform the authors:
> git filter-branch -f --env-filter 'eval ←↩
$(/path/rename_authors.sh)'HEAD

rename authors.sh’s output:

> export GIT_AUTHOR_NAME =...

> export GIT_AUTHOR_EMAIL =...

> export GIT_COMMITTER_NAME =...

> export GIT_COMMITTER_EMAIL =...

Check authors look OK:
> git shortlog -nse

https://git.enlightenment.org/devs/asdfuser/migration.git/tree/rename_authors.sh


Migrating the Repositories | Log Cleanups

Log Cleanups

Beautify the SVN revisions in the log:
> git filter-branch -f --msg-filter 'sed -e "s/git-svn-id: ←↩
[^@]*@\([0-9]*\).*/SVN revision: \1/"'HEAD
Old: "git-svn-id: svn+ssh://server/var/svn/e@2940 ..."

New: "SVN revision: 2940"

Add .mailmap (optional)
John Doe <jd@gmail.com> John D <jd@hotmail.com>



Migrating the Repositories | Layout Changes

Following Repository Layout Changes

Choose a unique file and run:
> git log --follow --name-only -- path/to/file

Get the list of the locations:
> git log --name-only --format=format: --follow path/to/file | ←↩
sort | uniq

trunk/elementary/configure.ac

trunk/TMP/elementary/configure.ac

trunk/tmp/elementary/configure.ac

trunk/PROTO/elm/configure.ac

trunk/edje/configure.ac



Migrating the Repositories | Layout Changes

Following Repository Layout Changes

Choose a unique file and run:
> git log --follow --name-only -- path/to/file

Get the list of the locations:
> git log --name-only --format=format: --follow path/to/file | ←↩
sort | uniq

trunk/elementary/configure.ac

trunk/TMP/elementary/configure.ac

trunk/tmp/elementary/configure.ac

trunk/PROTO/elm/configure.ac

trunk/edje/configure.ac



Migrating the Repositories | Layout Changes

Following Repository Layout Changes (2)

Create filter-branch.sh according to the list

Run:
> git filter-branch -f -d /tmp/ram/filter --prune-empty ←↩
--tree-filter /path/to/filter-branch.sh HEAD

mv trunk/elementary newroot

mv trunk/TMP/elementary newroot

mv trunk/tmp/elementary newroot

mv trunk/PROTO/elm newroot

# trunk/edje/configure.ac -- We don't want that

https://git.enlightenment.org/devs/asdfuser/migration.git/tree/filter_branch_scripts/filter-branch-elementary.sh


Migrating the Repositories | Layout Changes

Following Repository Layout Changes (2)

Create filter-branch.sh according to the list

Run:
> git filter-branch -f -d /tmp/ram/filter --prune-empty ←↩
--tree-filter /path/to/filter-branch.sh HEAD

mv trunk/elementary newroot

mv trunk/TMP/elementary newroot

mv trunk/tmp/elementary newroot

mv trunk/PROTO/elm newroot

# trunk/edje/configure.ac -- We don't want that

https://git.enlightenment.org/devs/asdfuser/migration.git/tree/filter_branch_scripts/filter-branch-elementary.sh


Migrating the Repositories | Duplicate Files

Duplicate Files – Our Very Own Hell

Run:
> git filter-branch -f --prune-empty --index-filter ←↩
path/remove_legacy_dup.sh START_HASH..END_HASH

The script contains:

> git log -C -C -M -M --name -status ←↩
$GIT_COMMIT ^.. $GIT_COMMIT | while read dir

...

> git rm --cached --ignore -unmatch -q



Migrating the Repositories | No Downtime

Git and an actively used SVN

Get a clone with (just) the new commits:
> git svn clone -r 83370:HEAD --use-log-author http://svnrepo/trunk

Run all of the scripts as described
Use grafts to stitch the trees together:

Set the graft points:
> echo commit parent1 > .git/info/grafts

Make the graft permanent:
> git filter-branch --prune-empty -f origin/master..HEAD

> rm .git/info/grafts



Migrating the Repositories | Speedups

Speeding Things Up

Scripts ran for 3 days – with the optimizations

git filter-branch --tree-filter was the slowest

mv relevant files to a new root directory, don’t rm -r

Always used mv, never cp
Mount a filesystem on RAM and work from there
Was faster than --index-filter for large directory removals

We sorted the rename_authors.sh list by commits per author

Always choose the most suitable mode for filter-branch

Lots of room for improvement, but this got us far



Additional Git Benefits

“Revert ‘Revert ‘Revert ‘eina: use Eina Spinlock for
Eina Chained Mempool.’ ’ ’ ”

— Stefan Schmidt



Additional Git Benefits | Work-Flows

Lets Us Experiment with Different Work-Flows

Centralized work-flow (SVN – what we do now)

Integration-manager work-flow

Rebase and merge with no fast-forward



Additional Git Benefits | Collaboration

Makes Collaboration Easier

Easy to fork

Work on features alone
Internal company clone
Easy to maintain local patches

Works well with email-based development

git format-patch

git send-email

git request-pull

Having an online patch review system helps contributions

Though the one we use (Phabricator) is lacking



Additional Git Benefits | Development

Makes Development Easier

Easy to back-port fixes – git cherry-pick

Simple to work on multiple features at once – branches

Possible to clean-up commits after the fact – git rebase -i

You can create progress snapshots while working
You can merge, split, reword and re-shuffle commits

Have a cover-letter for a set of commits – git merge --no-ff



Additional Git Benefits | Releases

Makes Releasing Versions Easier

Generate news from shortlog

We tag commits (in the message) with @fix, @feature, CID and etc.
We use the tagged commits + their shortlog for the NEWS file

Getting logs between versions/master is very easy

Can easily verify if we forgot to backport anything (grep for @fix tag).

Can have longer freeze periods and shorter merge windows thanks to branches



Changing the Culture

“SCREW YOU GIT!... here is my fix for jack daniels leak!”

— Carsten Haitzler



Changing the Culture | Git

Using Git

Commit Messages

Funny commit messages in SVN → Pro-commit messages in Git
Git works best with a certain commit format

Git dev-training

Tech restrictions
Education

The Git book: http://git-scm.com/book

Git - SVN crash course: http://git.or.cz/course/svn.html

EFL developer Git practices: link

http://git-scm.com/book
http://git.or.cz/course/svn.html
https://phab.enlightenment.org/w/git_practices/


Changing the Culture | Git Pro

Using Git Like a Pro(ish)

Use private dev repos and branches instead of creating dirs in repos
master is stable – not a playground (Jenkins)
Use their newly acquired powers (rebase -i, branches and etc)



Extra Infrastructure

“@68591: multiselect here is intentional to allow for theme overlays try
asking in irc or mailing list before randomly changing things like

this.”

— Mike Blumenkrantz



Extra Infrastructure

Tools We Used

Mailing-list – git_multimail.py

IRC bot – Irker

CGit

https://github.com/mhagger/git-multimail
http://www.catb.org/esr/irker/


Looking Back

“efl/doc: Remove all .svn entries from the generated file.
This is now longer needed now that we switched to git.”

— Stefan Schmidt



Looking Back

Reviewing the Changes One Year After. . .

Haters gonna hate, trolls will be trolls. . .

Though early haters grew to like it

The community considers the switch as a very good thing

People are starting to utilize Git’s abilities.

People develop in feature branches
Like the refined access control
Back-port using cherry-pick
and more. . .



Conclusions

Conclusions

+ Helped our development work flow

+ Social and technical changes are both needed

+ Flexible for the future

– Learning curve involved



Future Plans

“mooooo changed rev to .10”

— Mandrake



Future Plans

Coming soon. Maybe. . .

Try new work-flows

Use pre-receive lint, style checkers and etc.

More refined access control

Setting maintainers – Extra access the rest do not have



Questions

“Thanks for listening, questions?”

— Tom Hacohen
tom.hacohen@samsung.com

http://stosb.com

@TomHacohen

mailto:Tom%20Hacohen%20<tom.hacohen@samsung.com>
http://stosb.com
https://www.twitter.com/TomHacohen


Resources Attributions

Page 5, resources/git-logo.png

Page 6, resources/subversion-logo.png

Page 8, resources/keep_gate_closed.jpg

Page 16, resources/i-am-too-lazy-for-this.jpg

Page 28, resources/git_centralized.png

Page 28, resources/git_integration_manager.png

Page 34, resources/superhero_camp.png

Page 38, resources/haters_gonna_hate.jpg

*This presentation is based on a talk Daniel Wilmann and myself gave at LinuxCon EU
2013.

http://git-scm.com/book
http://jonasvanineveld.nl/
http://www.ellentv.com/2010/10/07/thats-a-pointless-sign/
http://www.troll.me/2011/06/17/troll/i-am-too-lazy-for-this/
http://git-scm.com/book
http://git-scm.com/book
http://www.strongeryou.com/
http://knowyourmeme.com/photos/249514-haters-gonna-hate


I didn’t want to talk about it. . .

Phabricator*

It’s PHP! So can be easily hacked on by any C programmer

Nice, shiny, we like to use it

Lets you connect with Facebook, Twitter and Google!

Makes contributions easy.

* The opinions reflected in this slide may not accurately represent the opinions of the presenter.



I didn’t want to talk about it. . .

Mailing-lists – tweaked git_multimail.py

Built-in support for gitolite

Very customizable, but we had to tweak it anyway...

Removed cover-letter
Allow empty announcement addresses without it complaining
Change ”From:” (since solved in upstream)

Awful-hacks – spoofing ”From:”

Hack v1.0: Keep the address, spoof the name (useful with sourceforge)
Hack v2.0: Spoof the address + name (self-hosted ML)

https://github.com/mhagger/git-multimail


I didn’t want to talk about it. . .

IRC bot – Irker

+ Simple and easy to deploy

+ We fixed issues, and tweaked (simple code)

Fixed Unicode support (fixed in upstream)
Fixed presentation of branches with front-slashes in the name
Print author name instead of username

– Annoying timeout bug (fixed in upstream)

http://www.catb.org/esr/irker/


I didn’t want to talk about it. . .

CGit Web-Frontend

+ Looks nicer and faster than gitweb

+ Integrates with Gitolite

Repository owner/description is controlled via Gitolite
Dev repo description is controlled by users

+ Category set via Gitolite

– Sort is only alphabetical (dev repositories)


	Introduction
	Why We Switched
	Git vs. SVN

	Infrastructure
	Gitolite
	Our Setup
	Gitolite Tips

	Migrating the Repositories
	Migration Goals
	Pre-migration
	Preparations
	Attribution
	Log Cleanups
	Layout Changes
	Duplicate Files
	No Downtime
	Speedups

	Additional Git Benefits
	Work-Flows
	Collaboration
	Development
	Releases

	Changing the Culture
	Git
	Git Pro

	Extra Infrastructure
	Looking Back
	Conclusions
	Future Plans
	Questions
	Appendix

