
Tom Hacohen
API World 2022

What You Need to Know Before
Launching Your API
Learnings from and other APIs

@TomHacohen
www.svix.com

https://twitter.com/TomHacohen
https://www.svix.com/


Who am I?
Founder and CEO of Svix - Webhooks as a Service

Help companies send webhooks
An API first developer tool

Open source dev and maintainer
Previously led teams at Samsung and the Israeli
intelligence corps



What is this talk about?
What to know before launching your API
Learnings from Svix and other services

Your requirements may differ
Apply reasonable judgement

Forgot to mention anything? Let me know!



General Guidelines



Keep It Simple Silly
Complexity is your biggest enemy - avoid if possible
Prevents you from moving fast
Many points of failure
Hard to reason about



There is good debt and bad debt
Good debt Bad debt



Understand your tech stack
Different technology comes with different trade-offs
Do you care about consistency? Availability?
Know the tools you use and their limitations



Understand the Problem



Know your customers

What do they want?
What do they care about?
What would they hate?
Have the curiosity of a child.



“If I asked people what they wanted, they
would have asked for a faster horse.”


— Henry Ford



It's not what you do,

it's what you enable



Understand the solution
Have a deep understanding of your chosen solution
But be flexible and dynamic
“Everyone has a plan until they get punched in the
mouth” — Mike Tyson



Set the right foundations



Manage API complexity
Strive for simplicity, and learn to say no
Be explicit, watch out for accidental flexibility

Especially watch out with GraphQL
Can't break API - if you build it, you're stuck with it

Try to plan for forward compatibility
Don't leak implementation details



How do you deploy?
SaaS? On prem? Both? Hybrid?
Are you limited to AWS? GCP? Only PostgreSQL?
Have any other runtime dependencies?



Choose your data layer wisely
“Bad programmers worry about the code. Good programmers worry about

data structures and their relationships.”

— Linus Torvalds



People will still use it wrong
Make it easy to use right
Make it hard to use wrong
Expect it to be used wrong and be ready



Find your north star
For us it's RELIABILITY, so:

Never lose a message once accepted
Avoid downtime at all costs
High speed and low latency



Be dependable



Monitor everything
Have fully visibility into your systems



Be careful with noise and aggregations
Too noisy:

Easy to miss issues
Team will get used to ignoring alerts

High-level aggregations and graphs are great
Easy to miss the details - have granularity



Logs everywhere
You want to be able to detect anomalies
Have information when something goes wrong
Be able to trace the whole request
Watch out not to log:

PII & PHI
Sensitive information



Reliability
Have redundancies in place
No single point of failure
Test your systems under load
Seek out failure cases and address



Ensure high availability
If you are down, your customers are down



Accountability
Have a public status page
Be quick and transparent about failures
Reach out to affected parties immediately
Do post-mortems to understand failures
Hold yourself to the highest standards



Define and test behaviors
Test all routes and behaviors
Use regression tests to lock behavior
Ensure high code coverage (though not enough!)
Test changes and have ongoing tests
We encode constraints in the type system —

thank you Rust!



Disaster recovery
Hope for the best, prepare for the worst
Have off-site backups and point-in-time recovery
List what can go wrong and how to address
Train staff on recovering from failures



Know your dependencies
You're only as strong as your weakest link
Only use trusted tools from trusted sources
Make sure your tools are dependable
Evaluate your dependencies yourself
It's OK to be bold, if you are also prudent



Know the metrics your customers care
about

Uptime in terms of % per month?
Uptime in terms of # of API errors?
Do they care about latency? Throughput?
Strong or eventual consistency?



Don't aim for 100% uptime
100% uptime is not achievable, you gotta stop somewhere

E.g. destruction of the earth is out of scope
Law of diminishing returns
Chasing 100% can make things more brittle

Which leads to less uptime…



Application security
OWASP Top 10 and best practices
Correct password handling
Strict authorization and restrictions



Operational security
Vulnerability handling - patching systems
Security and dependency scanners
Security training for the team
Encryption in transit and at rest



Strict and locked down
Least privilege access control
No one should have direct access to prod
Limit capabilities of accounts with access
Paper trail - log all access and operations



Isolating data between customers
Multi tenant? Single tenant?
Can one customer access another's data?
Have strong enforcement for that



Make security easy for your customers
Role based access control
Enable key rotation and scoped keys
Educate them about security with your service
Make it hard to get security wrong



Educate yourself with security best
practices



It's more than just code
There is a lot of devops
There is a lot of infrastructure
Use infra-as-code - don't touch the UI!
Build or buy? I prefer buy



Prepare for the future, 

but build for the present



Make it scalable,

but not too much

Build for 2-5x your current expected scale
Have a path in mind for 10-20x



Multi region,

multi environment

Customers want a test environment
Same region means lower latency and higher reliability
Watch out for splitting your internal data across regions



Role based access control
Your customers will want different users
Your customers will want different roles
Easier to keep it in mind from the start



Be flexible and extensible
Your customers are developers
They may want to use it differently
Let them build cool things with your product



Send webhooks
Enables real-time interactions with your system
Your customers want it to build integrations
Make sure it's reliable (retry, scaling, etc.)
Watch out for security implications (SSRF, MITM, replay)
Don't forget about monitoring, fanout, more…



The devtool equivalent of UX



Be consistent
API Standards vs. BDFL



Great docs make the difference
Both overview and deep-dive
Both beginners and advance
Show how your API should be used
Don't assume people know your product

The curse of knowledge

https://en.wikipedia.org/wiki/Curse_of_knowledge


Don't forget about tutorials
Guide developers through common uses
Get them started quickly - easy onboarding
Highlight cool features



Even developers need support
Maybe your API isn't clear
Maybe they found a bug or want a feature
Maybe they just need help
Make it easy to debug and report issues



Have a great API
Good

await fetch('https://api.svix.com/api/v1/app/', {

  method: 'POST',

  headers: {

    'Content-Type': 'application/json'

    'Accept': 'application/json'

    'Authorization': 'Bearer ' + token,

  },

  body: '{"name": "some name", "uid": "app_234"}',

});



Have an awesome SDK
Better

const svix = new Svix(token);



await svix.application.create({

  name: "some name",

  uid: "app_234",

});



A few SDK tips
Consistent with language first, across SDKs second
User-Agent: svix-libs/1.29.0/python

X-Request-ID: f058ebd...344e8cde5

Automatic retries in short intervals
Include attempt count in header
Reuse request-id

Show X-Request-ID in SDK errors



A few API tips
People want PATCH, in addition to PUT
Support idempotency for POST requests
Probably: pagination with iterators, not offsets
List responses should be objects:

{

  "data": [...],

  "done": true,

  "next": "app_1uikWVvIwNtmMXmwOnibro8nsH1",

  "prev": "-app_1v2QtUrfQvWLUhBYf35nOJY4yIo",

}



Be defensive and helpful



Tag your auth tokens

testsk_lF0OEQKwBr7VYC0qpFW7XGYIBycWgqcB.eu

test: optional test environment indicator
sk: type of key (secret key, public key, etc.)
lF0OEQKwB…BycWgqcB: random token
eu: region

Add the shape to secret scanning databases



Tag your IDs
// Application token

app_29we3mZemNijHrQcrLlJG1pRCst



// Endpoint token

ep_1uikje8Xw8Z3GaSwtUYmIBhhYTN



// Message token

msg_27OEWWmNfwpCwutpZ4GVeypLvvP



Support user-defined IDs
await svix.application.create({

  name: "some name",

  uid: "my-app-123", // This is your customers' internal ID

});

// Created ID: app_29we3mZemNijHrQcrLlJG1pRCst



// These IDs can then use interchangeably

await svix.endpoint.list("app_29we3mZemNijHrQcrLlJG1pRCst");

await svix.endpoint.list("my-app-123");



Custom metadata on entities
await svix.application.create({

  name: "some name",

  uid: "app_234",

  metadata: {

    "org": "organization 1",

  },

});



BONUS:

Would like to offer on-prem?

It's A LOT of additional work
Support multiple environments and way to deploy
You need more configuration options
Even more documentation
You have to think about data migrations

You can no longer manage that



BONUS:

Billing an API product

80/20 revenue rule for API companies
Experiment and find what works for you
Usage based billing is common, SaaS billing helps predictability

Tie it to perceived value metrics
Make sure customers pre-pay credits
Display usage in real-time: avoid surprise bills



Closing words
Main takeaway: it's not all about the code
These worked for us, you may be different
Thanks for their help:

Greg from Monday.com
Adam from Kable
Raffi and Anh-Tho from Lago
Aleks from WordCab



Questions?
For webhooks, check out  at 

Something missing? Tweet at 

www.svix.com

@TomHacohen

https://twitter.com/TomHacohen

