
Tom Hacohen
Devcon 2022

Challenges of building
an API service

Learnings from and other APIs

@TomHacohen
www.svix.com

https://twitter.com/TomHacohen
https://www.svix.com/

Who am I?
Founder and CEO of Svix
Open source dev and maintainer
Previously led teams at Samsung and
the Israeli intelligence corps

What is Svix?
Enterprise ready webhooks service
We help companies send webhooks
Customers such as: Brex and LTSE
Backed by Y Combinator, Aleph, and
amazing founders and CTOs.

What is this talk about?
What to know before starting an API service
Learnings from Svix and other services

Your requirements may differ
Apply reasonable judgement

Forgot to mention anything? Let me know!

Keep It Simple Silly
Complexity is your biggest enemy - avoid if possible
Prevents you from moving fast
Many points of failure
Hard to reason about

There is good debt and bad debt
Good debt Bad debt

Understand your tech stack
Different technology comes with different trade-offs
Do you care about consistency? Availability?
Know the tools you use and their limitations

Know your customers
What do they want?
What do they care about?
What would they hate?
Have the curiosity of a child.

"If I asked people what they
wanted, they would have asked

for a faster horse." — Henry Ford

It's not what you do,

it's what you enable

Understand the solution
Have a deep understanding of your
chosen solution
But be flexible and dynamic
"Everyone has a plan until they get
punched in the mouth" — Mike Tyson

Set the right foundations

Manage API complexity
Strive for simplicity, and learn to say no
Be explicit , watch out for accidental flexibility
Can't break API - if you build it, you're stuck with it

Try to plan for forward compatibility
Don't leak implementation details

How do you deploy?
SaaS? On prem? Both? Hybrid?
Are you limited to AWS? GCP? Only PostgreSQL?
Have any other runtime dependencies?

Choose your data layer wisely
"Bad programmers worry about the code. Good

programmers worry about data structures and their
relationships." — Linus Torvalds

People will still use it wrong
Make it easy to use right
Make it hard to use wrong
Expect it to be used wrong and be ready

Find your north star
For us it's RELIABILITY, so:

Never lose a message once accepted
Avoid downtime at all costs
High speed and low latency

Be dependable

Monitor everything
Have fully visibility into your systems

Logs everywhere
You want to be able to detect anomalies
Have information when something goes wrong
Watch out not to log:

PII & PHI
Sensitive information

Reliability
Have redundancies in place
No single point of failure
Test your systems under load
Seek out failure cases and address

Ensure high availability
If you are down, your customers are down

Accountability
Have a public status page
Be quick and transparent about failures
Reach out to affected parties immediately
Do post-mortems to understand failures
Hold yourself to the highest standards

Define and test behaviors
Test all routes and behaviors
Use regression tests to lock behavior
Ensure high code coverage (though not enough!)
Test changes and have ongoing tests
We encode constraints in the type system —

thank you Rust!

Disaster recovery
Hope for the best, prepare for the worst
Have off-site backups and point-in-time recovery
List what can go wrong and how to address
Train staff on recovering from failures

Know your dependencies
You're only as strong as your weakest link
Only use trusted tools from trusted sources
Make sure your tools are dependable
Evaluate your dependencies yourself
It's OK to be bold, if you are also prudent

Know the metrics your
customers care about

Uptime in terms of % per month?
Uptime in terms of # of API errors?
Do they care about latency? Throughput?
Strong or eventual consistency?

Application security
OWASP Top 10 and best practices
Correct password handling
Strict authorization and restrictions

Operational security
Vulnerability handling - patching systems
Security and dependency scanners
Security training for the team
Encryption in transit and at rest

Strict and locked down
Least privilege access control
No one should have direct access to prod
Limit capabilities of accounts with access
Paper trail - log all access and operations

Isolating data between
customers

Multi tenant? Single tenant?
Can one customer access another's data?
Have strong enforcement for that

Make security easy for your
customers

Role based access control
Enable key rotation and scoped keys
Educate them about security with your service
Make it hard to get security wrong

Educate yourself with security
best practices

It's more than just code
There is a lot of devops
There is a lot of infrastructure
Use infra-as-code - don't touch the UI!
Build or buy? I prefer buy

Prepare for the future,

but build for the present

Make it scalable,

but not too much

Build for 2-5x your current expected scale
Have a path in mind for 10-20x

Multi region,

multi environment

Role based access control
Your customers will want different users
Your customers will want different roles
Easier to keep it in mind from the start

Be flexible and extensible
Your customers are developers

They may want to use it differently
Let them build cool things on top of you

Send webhooks (using Svix…)
So they can build automation on top

The devtool equivalent of UX

Be consistent
API Standards vs. BDFL

Great docs make the difference
Both overview and deep-dive
Both beginners and advance
Show how your API should be used
Don't assume people know your product

The curse of knowledge

https://en.wikipedia.org/wiki/Curse_of_knowledge

Don't forget about tutorials
Guide developers through common uses
Get them started quickly - easy onboarding
Highlight cool features

Even developers need support
Maybe your API isn't clear
Maybe they found a bug or want a feature
Maybe they just need help
Make it easy to debug and report issues

Have a great API
Good

await fetch('https://api.svix.com/api/v1/app/', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 'Accept': 'application/json'

 'Authorization': 'Bearer ' + token,

 },

 body: '{"name": "some name", "uid": "app_234"}',

});

Have an awesome SDK
Better

const svix = new Svix(token);

await svix.application.create({

 name: "some name",

 uid: "app_234",

});

BONUS:

Would like to offer on-prem?

It's A LOT of additional work
Support multiple environments and way to deploy
You need more configuration options
Even more documentation
You have to think about data migrations

You can no longer manage that

Closing words
Main takeaway: it's not all about the code
These worked for us, you may be different
Something missing? Tweet at @TomHacohen

https://twitter.com/TomHacohen

Questions?

Website:
Twitter:
Github:

www.svix.com
@SvixHQ
github.com/svix/svix-webhooks

