
Workshop: Unlocking
Scalable and Real-Time Data

Access for Developers

Introductions

● Tom Hacohen

● Jerry Yang

Agenda

● 900 - 945 - Introduction to EDA
● 945 - 1030 - Coding Block 1 - Traditional API Foundation

● 1030 - 1100 - Break

● 1100 - 1130 - API vs EDA
● 1130 - 1230 - Coding Block 2 - Transitioning to Webhooks

● 1230 - 130 - Lunch

● 130 - 200 - Reliability, Security and Observability
● 200 - 300 - Coding Block 3 - Enhancing your Service

● 300 - 330 - Break

● 330 - 400 - Remaining Challenges and Best Practices
● 400 - 430 - Closing Statements/Questions

First, some background…

HTTP APIs and Synchronous Communication

● API is the foundation of the internet, REST is the most common pattern
● Request response system

○ Make a request -> do something -> return a response.
● Client to server and server to server.

Oftentimes API calls are fast.

But the desired operations are slow…

● Training an AI
● Processing a video
● Finding an Uber driver

Usually APIs follow a request-response

But sometimes they rely on external events

● Email received
● Package delivered
● Fraud detected

Solution: polling!

But polling is full of problems

● Data is only as real-time as the polling interval
● Creates load on the server
● Requires long-running tasks that are durable

Better Solution: Event Driven APIs

● Get notified when events happen. No need to “ask”.
○ Got an email? Get notified.
○ Package delivered? Get notified.
○ Fraud detected? Get notified.
○ AI training finished? Get notified.

Or more broadly: Event Driven Architecture (EDA)

● Real time data processing
● Natural fit for asynchronous events and workflows
● Pub/Sub relationships - can be one-to-one/one-to-many/many-to-many
● Loose coupling

○ Easy to scale producers
○ Easy to scale consumers

EDA in Practice

● Generate events at the source (producers)
● Manage the flow of events (brokers)
● Deliver events to the targets (consumers)

Confidential use only © 2024 Zoom Video Communications, Inc. 15

Ecosystem
Enablement

The event-driven model
helps simplify the

integration of third-party
services and extensions,

enabling platforms to
easily expand their

ecosystem.

Efficient
Resource
Allocation

Enhances resource
utilization by

dynamically allocating
based on event-driven

demand.

Integrity

Maintains system
integrity and accuracy,

even as it scales,
through coordinated,

event-based reactions.

Enhanced
Data

Consistency

Supports data
consistency across

distributed systems via
event sourcing and

immutable event logs.

Cost Savings

Helps reduce
operational expenses

through enhanced
resource use and

streamlined
development processes.

Benefits of Adopting EDA

EDA in Web Technologies

Short polling

● Query for status updates, return immediately.

Long polling

● Query for status updates, if there’s nothing, wait until there is (up to a
timeout).

Webhooks

● Get an HTTP callback call on updates.

WebSockets

● Keep an active connection and get a message when there are changes.

It’s time to build!

Let’s start with building a simple API

Code 1.1

● Main goal: Set up a working API backend service
service that will be our mock upstream event producer.
For this section we will be building:

○ Working API endpoints
○ A basic data storage

● We will use next.js as a javascript backend framework
● next.js startup guide

○ npx create-next-app@latest

○ Requires node.js version 18.17.0+

○ "starter" code

https://nextjs.org/
https://nextjs.org/learn-pages-router/basics/create-nextjs-app
https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-starter

Code 1.2

● API :
○ GET - check to see if there are any traps
○ POST - add a ‘trap’ to your database
○ POST - diffuse a ‘trap’ (remove)

○ How to implement API in NEXT

● Data Storage/database :
○ db
○ local data storage in the form of a .json object file
○ in-memory storage array that runs in project

https://nextjs.org/docs/app/building-your-application/routing/route-handlers

Code 1.3

● if you didn’t, go back and set up a SQLite DB
○ We will be creating a new set of REST API and a table

to store event subscriptions in the next section -
consider what parameters will be needed

● Check components we’ll be using soon:
○ Docker desktop (and docker-compose.yml)
○ Another Redis Desktop Manager
○ node dependencies - package.json

● Begin the transition to an EDA service
○ we will be building a webhook in this workshop: the

standardwebhooks docs are a great place to start!

https://github.com/standard-webhooks/standard-webhooks/blob/main/spec/standard-webhooks.md

SECTION 2: Advantages of EDA

APIs let you build scripts,
EDA lets you build integrations…

APIs are inherently one-sided

APIs are inherently one-sided

● You can create scripts to make modifications:
○ List / Delete / Send / Pay

● But you can’t react to events:
○ Changed / Received / Failed

APIs are sync EDA is async

● Sync is easier to reason about.
● Async has different failure modes.
● Order of events can get confusing.

API vs. EDA

● main comparisons
○ Communication Produce/consume vs. Request Response

■ Async vs sync
■ Higher possible delay/latency vs. immediate connection

○ Loose coupling vs specific response structures
○ Use Cases - modular/scalable vs. more structured/specific/straightforward

Sync APIs vs. Async Events

● It’s not a this vs. that, it’s a this + that
● Sync APIs are simpler to reason about but don’t work for async
● Async offers decoupling and flexibility:

○ Different systems can respond and scale differently to events
● Async increases latency but is also more real-time
● Polling is operationally expensive for both consumer and send

Webhooks as an example

What are webhooks?

Webhooks are a common name for HTTP callbacks, and are how services notify
each other of events.

Most common service-to-service EDA

● Webhooks are the most common example of EDA between services.
● Utilized by Stripe, Github, Zoom, Svix, and many others.
● You’ve probably used them yourself.

How do they usually work?

Live demo of Webhooks - ZOOM

● Zoom App Marketplace: https://devmp.zoomdev.us/

https://devmp.zoomdev.us/

Live demo of a Webhook Portal

Here is an example of webhook management portal.

● Using the pre-built portal included with
● https://example.svix.com

https://example.svix.com

In this workshop we’ll use webhooks!

Why webhooks?

● Easy
● Ubiquitous
● Powerful
● Most common
● Great for server to server - most common place.

Code Recap!

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-1

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-1

Code 2.1

● Main goal: Transition our backend service from ‘just’
an API endpoint to an Event Consumer + Webhook
Producer
○ Add a second set of API - this time to add/remove/fetch

event subscription data, as well as a table in your
database to store this information

○ Turn your original API into an event trigger - we will
produce a webhook when Set/Diffuse is called

○ Automatically send webhooks when events occur

● There are 2 options to use for your webhook test
endpoint:

○ Svix Playground
○ webhook.site

https://www.svix.com/play/
http://webhook.site

Code 2.2

● Define your events + event subscriptions!

● Create subscription API/database :
○ GET - check existing event subscriptions
○ POST - add a new event subscription
○ POST - remove an existing subscription by

subscriptionID

● Modify your old API to produce webhooks
to event subscription endpoints

○ … but how will we do this? Inline calls?

We need a message broker!

Code 2.3

● Main goal #2: To have a proper Event Consumer/Webhook
service, producing Webhooks inline is insufficient. We need
to implement a message broker

○ Message brokers are a core component of EDA
○ We need a component we and asynchronously produce

events too and consume events from

Code 2.4

● In a more sophisticated
architecture the producer,
broker, and consumer would
likely all be their own separate
services

● Ex. @ Zoom

Code 2.4

● What we are building is going
to be simpler…

Trap API

BullMQ MQ workers

Subscription API

● In a more sophisticated
architecture the producer,
broker, and consumer would
likely all be their own separate
services

● Ex. @ Zoom

Code 2.5

● Start Redis through Docker. We will have 2 different
instances for this project:

○ “8888:6379” - this queue will store events produced from our
upstream service

○ “9999:6379” - this queue will store webhook events to be
consumed by our webhook handlers

● We will implement our message broker through BullMQ
○ BullMQ is a queue system built on top of Redis

■ Relatively easy to implement!
○ Asynchronous read-out from the queue using Worker threads

■ Threads are easy to scale!

https://docs.bullmq.io/

SECTION 3: Design Best Practices

Downsides of Webhooks

● Unnecessary complexity for simple use-cases (e.g. point-to-point integration)
● Increased latency (but more real-time)
● Common to work with stale data (eventual consistency)
● Ordering of events (can’t be guaranteed)
● Debugging and monitoring (always a pain)
● Learning curve (that’s why we are giving this talk!)

Confidential use only © 2024 Zoom Video Communications, Inc. 51

Immediate
Data Access

EDA may lag in
scenarios
requiring instant,
synchronous
access, where
APIs support
direct and swift
data retrieval.

Point to Point
Integrations

For basic
client-server
exchanges, EDA's
overhead may not
justify its use over
simpler API calls.

Stateless
Operations

In applications
where each
transaction is
isolated, EDA's
complexity offers
little advantage
over
straightforward
API requests.

Monolithic
Applications

Applications that
are not justified
due to scale or
complexity,
API-based
architectures can
be easier to
implement and
manage, offering a
more traditional
approach to
application
design.

Simple
Interactions

When solutions
demand
uncomplicated,
direct
connections, the
simplicity of APIs
can often
outweigh EDA's
benefits.

Rapid
Prototyping

The agility of APIs
in rapid
development
settings can be
more conducive to
prototyping than
setting up an EDA
framework.

Limitations of EDA vs API

Confidential use only © 2024 Zoom Video Communications, Inc. 52

Scalability
● Asynchronous communication
● Seamlessly handle growing load

Event Design and Domain
Alignment
● Clear event specification
● Domain-driven design

Event Sourcing and System
Observability
● Logging
● Monitoring

Idempotency and Order
Management
● Avoid duplicating
● Helps to ensure event ordering

e.g: timestamps

Robust Error Handling
and Security
● Retries and dead letters
● Encryption and access

control

Operational Efficiency
● Dynamic resource allocation
● Maintenance efficiency

Best Practices in Designing EDA

Monitoring is extremely important

● API call: you know if fails.
● Webhook: you don’t know if you were supposed to

get one.

Reliability of delivery

● Webhooks are often critical ➡ need to succeed in real-time.
○ Not always possible…
○ Server is down? Networking issue? Bug?

● Now is best, “as soon as possible” is second-best.
● Solution:

○ Retry with an exponential backoff
○ Notify on failures
○ Allow for manual redrives

Webhook security (why)

● Webhooks is just an
unauthenticated HTTP POST.

● Can come from anyone.
● URL is modifiable by users (so can

be sent anywhere).

Webhook security (how)

● Sign payloads and timestamps (e.g. using StandardWebhooks)
● Sometimes also verify receiver (e.g using CRC check response)

https://www.standardwebhooks.com
https://developers.zoom.us/docs/api/rest/webhook-reference/

Additional (optional) mechanisms

● Usually used for compliance reasons.
● Authorization header
● Mutual TLS
● Static source IPs

Observability for webhooks

Let’s take another look at Zoom’s architecture…

Code Recap!

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-2

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-2

Code 3.1

● Main goal #1: Implement reliability in the form of a
staggered retry queue.

○ Decide on a retry delay interval
○ Add a new retry queue that processes these events!
○ BullMQ has a delay function built in

● Main goal #2: Implement security in the form of a
symmetric signature

○ Standard Webhooks specs
○ Update your webhook producer to match the standard

webhook headers
○ Use the standardwebhooks library to sign your

webhooks

Attempt Delay

1 10 s

2 60 s

3 5 min

4 30 min

5 60 min

6 …

https://www.google.com/search?q=bullmq+delay&rlz=1C5GCCM_en&oq=bullmq+delay&gs_lcrp=EgZjaHJvbWUqCQgAEEUYOxiABDIJCAAQRRg7GIAEMgcIARAAGIAEMgYIAhBFGEAyBwgDEAAYgAQyBwgEEAAYgAQyBwgFEAAYgAQyBwgGEAAYgAQyBggHEEUYPNIBCDEwNzNqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8
https://github.com/standard-webhooks/standard-webhooks/blob/main/spec/standard-webhooks.md
https://www.npmjs.com/package/standardwebhooks

Code 3.2
● Extra goal #1: try to improve logging in your event producer, message broker, and event

consumer
○ Write clear and concise logs printed directly to console or…
○ Formatting logs with extra information and outputting to a file (try the winston javascript library for this)

https://betterstack.com/community/guides/logging/how-to-install-setup-and-use-winston-and-morgan-to-log-node-js-applications/#getting-started-with-winston

Code 3.3
● Extra goal #2: attempt to add some sort of metric collector to your webhook consumer

○ Utilize components you already have built! You have a redis cache and a SQLite database ready to go
○ Track thing such as: events triggered, success/failure rates, time webhooks take to send, endpoints etc.

SECTION 4: Future Improvements

Code Recap!

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-3

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-3

Some issues to consider…

Don’t roll your own crypto

● Let’s implement asymmetric signatures for webhooks: easy!
● One keypair for the service, just put public key on the website.
● Win! 🎉

Don’t roll your own crypto

● Other customers of your service will be able to send each other messages.
○ These messages will pass validation!

● Easy: let’s add a “user identifier” in a header that people can check.
● Win! 🎉

Don’t roll your own crypto

● You need to include that header as part of the signature (otherwise it can be
faked).

● User identifiers have to be generated by the service and be immutable.
● Your customers need to ACTUALLY verify it: unlikely.

Don’t roll your own crypto (better)

● Don’t send the user identifier, but make it be part of the signature.
● This way people will need to store their user identifier and will be forced to

pass it to the signature.
● Win (this time for real)! 🎉

You can’t guarantee webhook ordering

● Failed deliveries will have to block all of the deliveries (denial of service)
● Even if webhooks are sent in order, they may not be processed in order due

to differences in the processing speed of the webhook handlers.
● Waiting for the processing of the first webhook to complete before sending the

second would significantly limit delivery rate.

● Read more: https://www.svix.com/blog/guaranteeing-webhook-ordering/

https://www.svix.com/blog/guaranteeing-webhook-ordering/

Server side request forgery (SSRF)

● SSRF allows attackers to manipulate server-side requests to call different
destinations - inherent with webhooks!

● Common targets include internal networks and services.
● Mitigation strategies include network segmentation, proxying, and

application-level request blocking based on IP ranges.

Some improvements to be made…

Active-Active deployments

● High availability architecture

● Relies on having separate
deployments in (ideally)
different physical locations

● Reroutes API calls through a
gateway/proxy server

● Offers both failover and load
balancing

Fast Fail Error Handling

● Problem: Customer endpoints can go down or become unavailable all the
time. Why waste our own resources when it could possibly be their problem?

● Solution: Fast fail on those endpoints

Lets get back to coding…

Code 4.1

● Main goal #1: Nothing concrete here, sorry!
○ Try to implement a fix to one problems described above
○ Go back to work on previous sections of code

Confidential use only © 2024 Zoom Video Communications, Inc. 78

Enables Real-Time
Responsiveness

1

Operational Efficiency
Through Dynamic
Resource Allocation

Decouples System
Components

Improves Scalability
and Flexibility

Future of Developer
Ecosystems

3 542

EDA: Key Takeaways

Any Questions ?

