DevOps

by & devmio

Workshop: Unlocking
Scalable and Real-Time Data
Access for Developers

Introductions

e [om Hacohen

Gy svix

e Jerry Yang

Z00Mm

Agenda

e 900 - 945 - Introduction to EDA
e 945 -1030 - Coding Block 1 - Traditional APl Foundation

° 1030 - 1100 - Break

e 1100 - 1130 - APl vs EDA
e 1130 - 1230 - Coding Block 2 - Transitioning to Webhooks

° 1230 - 130 - Lunch

e 130 - 200 - Reliability, Security and Observability
e 200 - 300 - Coding Block 3 - Enhancing your Service

e 300 - 330 - Break

e 330 - 400 - Remaining Challenges and Best Practices
e 400 - 430 - Closing Statements/Questions

First, some background...

HTTP APIs and Synchronous Communication

e APl is the foundation of the internet, REST is the most common pattern

e Request response system
o Make a request -> do something -> return a response.

e Client to server and server to server.

HOW APl WORKS

Milliseconds

Oftentimes API calls are fast.

20
18
16
14
12

10

T T T T T T
21:45 21:50 21:55 22:00 22:05 22:10

T
22:15

T
22:20

T
22:25

T
22:30

T
22:35

T
22:40

But the desired operations are slow...

e Training an Al
e Processing a video
e Finding an Uber driver

Usually APls follow a request-response

But sometimes they rely on external events

e Email received
e Package delivered
e Fraud detected

Solution: polling!

ARE WE
THERE YET? ‘lr\liféky\';ﬂ?

| FIRST DAY oF
SCHOOL/COLLEGE

But polling is full of problems

e Data is only as real-time as the polling interval
e Creates load on the server
e Requires long-running tasks that are durable

CPU Utilization

1h 6h 12h 1d 2d 3d 1w 2w
Utilization 100% | 18:40 July 26, 2012
100%
/ 80%
60%

) And WHAWW/

Spm

0%
"tom 2pm T ‘epm N
W)

Better Solution: Event Driven APls

e (et notified when events happen. No need to “ask”.
o Got an email? Get notified.
o Package delivered? Get notified.
o Fraud detected? Get notified.
o Al training finished? Get notified.

Or more broadly: Event Driven Architecture (EDA)

Real time data processing
Natural fit for asynchronous events and workflows
Pub/Sub relationships - can be one-to-one/one-to-many/many-to-many

Loose coupling
o Easy to scale producers
o Easy to scale consumers

EDA in Practice

e Generate events at the source (producers)
e Manage the flow of events (brokers)
e Deliver events to the targets (consumers)

Benefits of Adopting EDA

Ecosystem
Enablement

The event-driven model
helps simplify the
integration of third-party
services and extensions,
enabling platforms to
easily expand their
ecosystem.

Efficient
Resource
Allocation

Enhances resource
utilization by
dynamically allocating
based on event-driven
demand.

ala

Integrity

Maintains system
integrity and accuracy,
even as it scales,
through coordinated,

event-based reactions.

Enhanced
Data
Consistency

Supports data
consistency across
distributed systems via
event sourcing and
immutable event logs.

&

Cost Savings

Helps reduce
operational expenses
through enhanced
resource use and
streamlined
development processes.

EDA in Web Technologies

Method Limitation Efficiency Server Load Complexity

Short Polling

; . The server needs to handle
" Can still experience: Not that many P . sy SR SR
Long Polling 1 ceEe unnecessary requests. Persistent Conecctions long-lived oc‘:;:mecﬂn's s and their

Web Hooks

65535 connections per |siz

Web Sockets EeATE

Uni directional,
SSE 6 conne per

LEGEND

mrevorstamongat [

Not the best not the worst

The best among all

Short polling

Query for status updates, return

immediately.

Method

Short Polling

Long Polling

Web Hooks

Web Sockets

Limitation Efficiency Server Load Complexity

The server needs to handle

Can-sﬂ“l‘lstla:;;;rlsnnsr and their

ﬂmsouls

Uni directional,
6 connections per

LEGEND

The worst among all
Not the best not the worst

The best among all

Long polling

e Query for status updates, if there’s nothing, wait until there is (up to a
timeout).

Webhooks

Get an HTTP callback call on updates.

Method

Short Polling

Long Polling

Web Hooks

Web Sockets

Limitation Efficiency Server Load Complexity

The server needs to handle

Can-sﬂ“l‘lstla:;;;rlsnnsr and their

timeouts.

5 connection:
machine:

LEGEND

The worst among all
Not the best not the worst

The best among all

WebSockets

e Keep an active connection and get a message when there are changes.

Method Limitation Efficiency Server Load Complexity

Short Polling

Can still experience

The server needs to handle
lays |

Long Polling and their

Not that many

timeouts

Web Hooks

Relatively large header

|size bu tays
Web Sockets et
exchange needed

5 connection:
machine

Uni directional,
6 connections per
browser

LEGEND
The worst among all
Not the best not the worst

The best among all

It's time to build!

Let’s start with building a simple API

Code 1.1

e Main goal: Set up a working API backend service m—
service that will be our mock upstream event producer. —
For this section we will be building: —_—
o Working API endpoints
o Abasic data storage

JS

XX £ Desktop — -zsh — 190x45
[Desktop — -zsh

jyang@HW@@18611 Desktop % npx create-next-app@latest
~ What is your project named? .. my-webhook-app
~ Would you like to use TypeScript? .. No / Yes
~ Would you like to use ESLint? No / Yes
~ Would you like to use Tailwind CSS? No / Yes
~ Would you like to use “src/' directory? .. No / Yes
Would you like to use App Router? (recommended) .. ! No / Ye

PY We will use next_is as a javascript backend framework “ Would you Like to customize’ the default isport sliss (@17 - Mo / vec

What import alias would you like cnnfxqur.d? @/a(

Creating a new Next.js app in /Users/jyang/Desktop/my-webhook-app

e next.js startup quide

Initializing project with template: app

o npx create-next-app@latest nstaling dependencies:

EBADENGINE package: 'next@14.2.12',

EBADENGINE required: { node: '>=18.17.8' },
EBADENGINE current: { node: 'v16.14.8', npm: '8.3.1' }
EBADENGINE }

O Requlres nOdeJS VerSIOn 18 1 70+ II EBADENGINE Unsupported engine {

o 'starter" code

added 21 packages, and audited 22 packages in 5s

found @ vulnerabilities
uccess| Created my-webhook-app at /Users/jyang/Desktop/my-webhook-app

jyang@HWe18611 Desktop % I

https://nextjs.org/
https://nextjs.org/learn-pages-router/basics/create-nextjs-app
https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-starter

Code 1.2

o API:

o GET - check to see if there are any traps
o POST - add a ‘trap’ to your database
o POST - diffuse a ‘trap’ (remove)

o How to implement APl in NEXT

e Data Storage/database :

o) ?SQLite db \
o

local data storage in the form of a .json object file
o in-memory storage array that runs in project

https://nextjs.org/docs/app/building-your-application/routing/route-handlers

Code 1.3

e if you didn’t, go back and set up a SQLite DB

o We will be creating a new set of REST API and a table
to store event subscriptions in the next section -
consider what parameters will be needed

e Check components we’ll be using soon:
o Docker desktop (and docker-compose.yml)
o Another Redis Desktop Manager
o node dependencies - package.json

e Begin the transition to an EDA service
o we will be building a webhook in this workshop: the
standardwebhooks docs are a great place to start!

https://github.com/standard-webhooks/standard-webhooks/blob/main/spec/standard-webhooks.md

DevOps

by & devmio

SECTION 2: Advantages of EDA

APls let you build scripts,
EDA lets you build integrations...

APls are inherently one-sided

TR,

APls are inherently one-sided

e You can create scripts to make modifications:
o List/ Delete / Send / Pay

e But you can’t react to events:
o Changed / Received / Failed

APls are sync EDA is async

e 3Sync is easier to reason about.
e Async has different failure modes.
e Order of events can get confusing.

APl vs. EDA

® main comparisons
o Communication Produce/consume vs. Request Response
m Asyncvs sync
m Higher possible delay/latency vs. immediate connection
o Loose coupling vs specific response structures
o Use Cases - modular/scalable vs. more structured/specific/straightforward

Sync APIs vs. Async Events

e |t's not a this vs. that, it's a this + that
e Sync APlIs are simpler to reason about but don’t work for async

e Async offers decoupling and flexibility:
o Different systems can respond and scale differently to events

e Async increases latency but is also more real-time
e Polling is operationally expensive for both consumer and send

Webhooks as an example

What are webhooks?

Webhooks are a common name for HTTP callbacks, and are how services notify
each other of events.

Most common service-to-service EDA

e \Webhooks are the most common example of EDA between services.
e Ultilized by Stripe, Github, Zoom, Svix, and many others.
e You've probably used them yourself.

How do they usually work?

< Endpoints Event Catalog Logs Activity

Endpoints > New Endpoint

Endpoint URL

Configure an endpoint or test with Svix Play @

Description

%

Subscribe to events Event Catalog »

account
account.balance.updated
verification
account.verification.completed
account.verification.required
api.access.granted
budget.limit.updated

card

Receiving all events. Select from the above list to filter.

Live demo of Webhooks - ZOOM

e Zoom App Marketplace: https://devmp.zoomdev.us/

Welcome to

Z00Mm Workplace

https://devmp.zoomdev.us/

Live demo of a Webhook Portal

Here is an example of webhook management portal.

e Using the pre-built portal included with @ SViX
e https://example.svix.com

https://example.svix.com

In this workshop we’ll use webhooks!

Why webhooks?

Easy

Ubiquitous

Powerful

Most common

Great for server to server - most common place.

Code Recap!

https://qithub.com/jerryang1023/jax-webhook-2024/tree/workshop-part-1

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-1

Code 2.1

e Main goal: Transition our backend service from ‘just’
an API endpoint to an Event Consumer + Webhook
Producer

O Add a second set of API - this time to add/remove/fetch
event subscription data, as well as a table in your
database to store this information

o Turn your original APl into an event trigger - we will
produce a webhook when Set/Diffuse is called

o Automatically send webhooks when events occur

e There are 2 options to use for your webhook test
endpoint:
o Svix Playground
o webhook.site

Project v

v [3jax-2024
> [D.idea
>
> O
v [@Dsrc
v B app
v [o1 apbi
v [2 event_subscriptions
> [add
> [remove
route.js
v [trap
> [diffuse
> [Dset
route.js
> [fonts
favicon.ico

3 globals.css

M layout.js

B page.js
g page.module.css
v [@lib
v [handler

eventConsumer.js
{} eventMap.json
index.js
webhookConsumer.js

B db.js

B mq.js

B redis.js

https://www.svix.com/play/
http://webhook.site

Code 2.2

"trap.set": 1,

e Define your events + event subscriptions! “tpap.diffuse”: 2

e Create subscription APl/database :
o GET - check existing event subscriptions
o POST - add a new event subscription
o POST - remove an existing subscription by
subscriptionID

NOT EXISTS subscriptions

e Modify your old API to produce webhooks

to event subscription endpoints
o ... but how will we do this? Inline calls?

We need a message broker!

Project v

v [3jax-2024
Code 2.3 S
] =
v Bsrc
e Main goal #2: To have a proper Event Consumer/Webhook V ?iDpra
service, producing Webhooks inline is insufficient. We need (R e eleaiions
to implement a message broker o
O Message brokers are a core component of EDA B route s
o We need a component we and asynchronously produce S
events too and consume events from | e

> [Dset
route.js
> [fonts
favicon.ico

3 globals.css

/—\‘ = layout.js
S B page js
.o g page.module.css
? Channels v @Dlib
, (—].) . g v [handler
P\ LS P\ 0

“\U”J v S eventConsumer.js

/ e {} eventMap.json

—_— L—J ~ index.js

\? Broker webhookConsumer.js
B db.js

B maq.js
B redis.js

Producers Consumers

Code 2.4

In a more sophisticated
architecture the producer,
broker, and consumer would
likely all be their own separate
services

Ex. @ Zoom

| Phone Web |

[Log Service | AsyncMQ

XMPP

EventConsumer WebHook:

get sync subscnptlon info

‘ .

get subscrlptlon info

X

Customer

Code 2.4

In a more sophisticated
architecture the producer,
broker, and consumer would
likely all be their own separate
services

Ex. @ Zoom

What we are building is going
to be simpler...

A

/ \

| Web server |
o

| Phone Web |

| Log Service |

XMPP

N4

Lambda
Server

Trap API

BullMQ MQ workers
AsyncMQ @ WebHook
get sync sub\scription info
‘ Marketplace ‘

E save_‘

get subscription info

Subscription API

X

Customer

Code 2.5

e Start Redis through Docker. We will have 2 different

instances for this project:
o “8888:6379” - this queue will store events produced from our
upstream service
o “9999:6379” - this queue will store webhook events to be
consumed by our webhook handlers

e We will implement our message broker through BullMQ
o BullMQ is a queue system built on top of Redis
m Relatively easy to implement!
o Asynchronous read-out from the queue using Worker threads
m Threads are easy to scale!

https://docs.bullmq.io/

DevOps

by & devmio

SECTION 3: Design Best Practices

Downsides of Webhooks

Unnecessary complexity for simple use-cases (e.g. point-to-point integration)
Increased latency (but more real-time)

Common to work with stale data (eventual consistency)

Ordering of events (can’t be guaranteed)

Debugging and monitoring (always a pain)

Learning curve (that's why we are giving this talk!)

Limitations of EDA vs API

Immediate
Data Access

EDA may lag in
scenarios
requiring instant,
synchronous
access, where
APIs support
direct and swift
data retrieval.

Point to Point
Integrations

For basic
client-server
exchanges, EDA's
overhead may not
justify its use over
simpler API calls.

Stateless
Operations

In applications
where each
transaction is
isolated, EDA's
complexity offers
little advantage
over
straightforward
API requests.

Monolithic
Applications

Applications that
are not justified
due to scale or
complexity,
APIl-based
architectures can
be easier to
implement and
manage, offering a
more traditional
approach to
application
design.

Simple
Interactions

When solutions
demand
uncomplicated,
direct
connections, the
simplicity of APIs
can often
outweigh EDA's
benefits.

Rapid
Prototyping

The agility of APIs
in rapid
development
settings can be
more conducive to
prototyping than
setting up an EDA
framework.

Best Practices in Designing EDA

Event Design and Domain Scalability Event Sourcing and System
Alignment e Asynchronous communication Observability
e Clear event specification e Seamlessly handle growing load e Logging
e Domain-driven design e Monitoring
Idempotency and Order Robust Error Handling
Management and Security Operational Efficiency
e Avoid duplicating * Retries ?”d dead letters e Dynamic resource allocation
e Helps to ensure event ordering e Encryption and access

e Maintenance efficiency
e.g: timestamps control

V4N 927

Monitoring is extremely important ¢ @ Jasper's Boutique

e API call: you know if fails. Bt el
e \Webhook: you don’t know if you were supposed to
Your order has been processed
d i i
get one. for sigmant sharty We ll

send you a notification on
WhatsApp once it has been
shipped.

Thank you!

APRIL 30,2018

Your order has shipped and
is expected to be delivered
on May 5, 2018!

Reliability of delivery

e \Webhooks are often critical = need to succeed in real-time.
o Not always possible...
o Serveris down? Networking issue? Bug?

e Now is best, “as soon as possible” is second-best.

e Solution:
o Retry with an exponential backoff
o Notify on failures
o Allow for manual redrives

Webhook security (why)

e \Webhooks is just an
unauthenticated HTTP POST.

e (Can come from anyone.

e URL is modifiable by users (so can
be sent anywhere).

Webhook security (how)

e Sign payloads and timestamps (e.g. using Standard\WWebhooks)
e Sometimes also verify receiver (e.g using CRC check response)

https://www.standardwebhooks.com
https://developers.zoom.us/docs/api/rest/webhook-reference/

Additional (optional) mechanisms

Usually used for compliance reasons.
Authorization header

Mutual TLS

Static source IPs

servability for webhooks

Endpoints > temp

https://play.svix.com:443/in/e_fyORTNXEnRVfETRohicmD0ZVcJY/

Overview Advanced Testing

Description

Production billing system

Attempt Delivery Stats

SUCCESS - 1

Message Attempts

EVENT TYPE CHANNELS
v Succeeded user.created
v Succeeded invoice.paid
v Succeeded user.createdaeosntuheoau

Showing 3 items

MESSAGE 1D

msg_2mIJt7ou7dmLLQdXhiavze2]j7ko

msg_2j6bOpIrFEDjQxYPKDVEVIRDiqW

msg_2j6WajKlaaTRqQUWPINL38vivdum

Edit

Edit

Creation Date

July 26, 2023 at 5:54 AM

Last Updated

September 23, 2024 at 7:18 AM

Channels Edit

None

Subscribed events Edit

Listening to all events

Signing Secret ~

sereneenees @

) All Succeeded Failed

TIMESTAMP
September 19, 2024 at 8:06 AM
July 11, 2024 at 8:04 AM

July 11, 2024 at 7:27 AM

Filters

Let's take another look at Zoom’s architecture...

\‘ Web server | ASY"CMQ.
monitor topic bynamoDB
webhook deliver |~
Phone Web ASYHCMQ
retry topic ‘\3 content /
tim AsyneMQ Customer
| Log Service AsyncMQ EventConsumer Y ——WebHook—>
condition Customer
|°g file get sync subscription info

XMPP : - 3 \
[log system:ELK | ’

Kafka save— tp <

ElsticSoaroh save subscription disable list

. AsyncMQ
Big data webhook failed
| team report
every day

Code Recap!

https://qithub.com/jerryvang1023/jax-webhook-2024/tree/workshop-part-2

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-2

Code 3.1

e Main goal #1: Implement reliability in the form of a

staggered retry queue.
o Decide on a retry delay interval
o Add a new retry queue that processes these events!
o BullMQ has a delay function built in

e Main goal #2: Implement security in the form of a

symmetric signature
o Standard Webhooks specs
o Update your webhook producer to match the standard
webhook headers
o Use the standardwebhooks library to sign your
webhooks

Attempt Delay
1 10 s

2 60 s

3 5 min
4 30 min
5 60 min
6

https://www.google.com/search?q=bullmq+delay&rlz=1C5GCCM_en&oq=bullmq+delay&gs_lcrp=EgZjaHJvbWUqCQgAEEUYOxiABDIJCAAQRRg7GIAEMgcIARAAGIAEMgYIAhBFGEAyBwgDEAAYgAQyBwgEEAAYgAQyBwgFEAAYgAQyBwgGEAAYgAQyBggHEEUYPNIBCDEwNzNqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8
https://github.com/standard-webhooks/standard-webhooks/blob/main/spec/standard-webhooks.md
https://www.npmjs.com/package/standardwebhooks

Code 3.2

e Extra goal #1: try to improve logging in your event producer, message broker, and event

consumer
o Write clear and concise logs printed directly to console or...

O Formatting logs with extra information and outputting to a file (try the winston javascript library for this)

Elasticsearch index @ i L 46,286,570 HITS 2024-09-30T01:31:02.787Z ~ 2024-10-01T01:31:02.787Z - Auto v Service - All v

marketplaceeventconsumer (13) o Count
Elasticsearch url @ g)] (2o
6,000,000
Selected fields LINES 4,000,000 |:|
2,000,000
k @reglonid . = I I N S Ve e SR S et
04:00 07:00 10:00 13:00 2024-09-30 16:00 2024-09-30 19:00 2024-09-30 22:00

© @timestamp
logdate per Hour

t loglevel
t message Time ~ message @regionid @timestamp loglevel
Available fields G A 0 2024-10-01T01:30:31.636Z 2624-10-01 01:30:31.638(] [search-cl: resher] [WARN] [ZoonSearch:?] ? - Get token retry, Wait: 66000 ms, VAT 2024-10-01T WARN
retry tines: 27865! 01:30:32.91
6z
KiQhosinane > 2024-10-61761:30:31.638Z 2624-10-81 ©1:30:31.638[] [search-client-token-refresher] [ERROR] [ZoomRestClientTransport:?] ? - GetToken fail @ @ va1 2024-10-81T ERROR
K @instance_id ackingld: 92b926a-5b83-41ce-b67-17c8F1e7fob2 org.elasticsearch.client.ResponseException: method [POST], host [ht 01:30:32.01
t @log_stream tps://search.zipow.com], URT [/1.8/universal/client/newToken], status line [HTTP/1.1 502 Bad Gateway] <html> <head 7
><title»562 Bad Gateway</titles</heads <body» <center»<h1»562 Bad Gateway< > <hr> i
KK </body> </html> at or lient er ient.java:339) at org.elastic
K index earchiclient fort Java:3e6) at org Lient -
e rfornRequest(ZoonRestClient. java:278) at co.elastic.clients.zoom TR
ientTransport.java:§11) at co.elastic.clients.zoom ransport .getToken(ZoonRestClientTransport. java:1
L 70) at ...

acceptCount

> 2624-10-01701:30:03.9922 2024-10-01 01:30:63.992(1[pool-8-rs4j-appPlatform-16] [INFO] [AppPlatfornClie VAT 2024-10-61T INFO
s i) nt:?] 7 - [AppPlatformClient#getCustonHeaderSetting] ---> POST {E}https://devmp.zoondev.us/api/v1/event-consumer/s 01:30:04.17
k action ubscription/customHeader{/E} START HTTP/1.1 oz
activeCount > 2024-10-81701:30:03.9927 2024-10-81 ©1:30:03.992[1[pool-8-rs4;j-appl 16] [INFO] [AppPlatformClie VA1 2024-10-01T INFO
k appld nt:?] 2 - [Appl g] ---> body: {E}[" 1418199 01:30:04.17
eg"1{/E} oz

K app_component

t app.id < 1 2 3 4 5 6 . 10 > LUEN Page-so | v | o500]

https://betterstack.com/community/guides/logging/how-to-install-setup-and-use-winston-and-morgan-to-log-node-js-applications/#getting-started-with-winston

Code 3.3

e Extra goal #2: attempt to add some sort of metric collector to your webhook consumer

o Utilize components you already have built! You have a redis cache and a SQLite database ready to go
o Track thing such as: events triggered, success/failure rates, time webhooks take to send, endpoints etc.

WebHook - Total Send Count ... ® WebHook - Total Send Succe... O WebHook - Total Send Count ... ® WebHook - Total Send Succe... ®

sum_status.count {clusterid: go} sum_status_200.count

338.572K 248.231K 336.58K 248.125K

WebHook - Active DistinctA... © WebSocket - Active Distinct ... © WebSocket - Total Send Count ©O WebSocket - Total Send Succ... ©

- - sum_success_send.count {clusterld:
distinct_appld_count distinct_appld_count sum_status.count {clusterld: go} 4
9

506 44 117 117

v Event Consumer - WebHook Event Metrics @ 0

Webhook - Total Send Count O Webhook - First Send Success Rate O

15K
12K
9K
6K
S
N

9/29 00:00 9/30 00:00 9/29 00:00 9/30 00:00

® sum_status.count {C: go, R: VA1} @ sum_status.count {C: go, R: OH1} ® success_rate_first {R: VA1, C: go} @ success_rate_first {R: OH1, C: go}

DevOps

by & devmio

SECTION 4: Future Improvements

Code Recap!

https://qithub.com/jerryvang1023/jax-webhook-2024/tree/workshop-part-3

https://github.com/jerryang1023/jax-webhook-2024/tree/workshop-part-3

Some issues to consider...

Don’t roll your own crypto

e Let's implement asymmetric signatures for webhooks: easy!
e One keypair for the service, just put public key on the website.
e Win! &

Don’t roll your own crypto

e Other customers of your service will be able to send each other messages.
o These messages will pass validation!

e Easy: let's add a “user identifier’ in a header that people can check.
o Win! &

Don’t roll your own crypto

e You need to include that header as part of the signature (otherwise it can be
faked).

e User identifiers have to be generated by the service and be immutable.

e Your customers need to ACTUALLY verify it: unlikely.

Don’t roll your own crypto (better)

e Don’t send the user identifier, but make it be part of the signature.
e This way people will need to store their user identifier and will be forced to

pass it to the signature.
e Win (this time for real)! &

You can’t guarantee webhook ordering

e Failed deliveries will have to block all of the deliveries (denial of service)

e Even if webhooks are sent in order, they may not be processed in order due
to differences in the processing speed of the webhook handlers.

e Waiting for the processing of the first webhook to complete before sending the
second would significantly limit delivery rate.

e Read more: https://www.svix.com/blog/quaranteeing-webhook-ordering/

https://www.svix.com/blog/guaranteeing-webhook-ordering/

Server side request forgery (SSRF)

e SSRF allows attackers to manipulate server-side requests to call different
destinations - inherent with webhooks!

e Common targets include internal networks and services.

e Mitigation strategies include network segmentation, proxying, and
application-level request blocking based on IP ranges.

Some improvements to be made...

Active-Active deployments

e High availability architecture

]
VA region

By default to domain route to
Region VA / Region VA2

e Relies on having separate
deployments in (ideally) | |
different physical locations | l

| Check haid to VA
Lookup <—: Nginx plus VA Nginx plus VA2
b to

) Hanedled by !:urrenl n
e Reroutes API calls through a N

gateway/proxy server —
. ol | [

Database VA Redis VA

e Offers both failover and load
. I Data sync between regions use AsyncMg |
balancing]

Fast Fail Error Handling

e Problem: Customer endpoints can go down or become unavailable all the
time. Why waste our own resources when it could possibly be their problem?
e Solution: Fast fail on those endpoints

OVERALL
fail (ex. -7 remote error)
DESIGN FLOW p
Y
Topic_Webhook send webhook alert
Endpoint: ‘request url'
t I
— J‘
i — check for url
l;'?sgf:: e — produce retry task
AsyncMQ write into redis { .
2 if retry max ? Redis J
(caffiene?) on entry expire: retry task on endpoint

if retry suceeds, remove endpoint

Lets get back to coding...

Code 4.1

e Main goal #1: Nothing concrete here, sorry!

o Try to implement a fix to one problems described above
o Go back to work on previous sections of code

EDA: Key Takeaways

Enables Real-Time
Responsiveness

Decouples System
Components

Operational Efficiency
Through Dynamic
Resource Allocation

Improves Scalability
and Flexibility

Future of Developer
Ecosystems

y 3 =
NN
| & | W
e e’ B

by & devmio

Any Questions ?

We ask for
your feedback!

& devmio

